Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 257: 119328, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851369

RESUMEN

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.

3.
J Environ Manage ; 350: 119567, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007927

RESUMEN

Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.


Asunto(s)
Buxus , Administración de Residuos , Residuos Peligrosos , Biocombustibles/análisis , Ésteres , Catálisis , Sodio , Aceites de Plantas
4.
Chemosphere ; 338: 139349, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37385480

RESUMEN

This study investigates the potential role of Juglans sp. root extract-mediated copper oxide nanoparticles of Luffa cylindrica seed oil (LCSO) into methyl esters. The synthesized green nanoparticle was characterized by Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Scanning electron microscopy (SEM) spectroscopies to find out the crystalline size (40 nm), surface morphology (rod shape), particle size (80-85 nm), and chemical composition (Cu = 80.25% & O = 19.75%), accordingly. The optimized protocol for the transesterification reaction was adjusted as oil to methanol molar ratio (1:7), copper oxide nano-catalyst concentration (0.2 wt %), and temperature (90 °C) corresponding to the maximum methyl esters yield of 95%. The synthesized methyl esters were characterized by GC-MS, 1H NMR, 13C NMR, and FT-IR studies to know and identify the chemical composition of newly synthesized Lufa biodiesel. The fuel properties of Luffa cylindrica seed oil biofuel were checked and compared with the American Biodiesel standards (ASTM) (D6751-10). Finally, it is commendable to use biodiesel made from wild, uncultivated, and non-edible Lufa cylindrica to promote and adopt a cleaner and sustainable energy method. The acceptance and implementation of the green energy method may result in favourable environmental effects, which in turn may lead to better societal and economic development.


Asunto(s)
Luffa , Nanopartículas , Ésteres , Cobre , Aceites de Plantas/química , Biocombustibles/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Esterificación , Óxidos , Catálisis
5.
Heredity (Edinb) ; 130(4): 223-235, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739333

RESUMEN

A long-standing goal in the field of polyploid biology has been the derivation of mathematical models of gamete mode formation. These models form the basis of statistical inference and evolutionary theory. Here, we present 3-locus models of gamete mode formation in autotetraploids without and with preferential cross-over formation. The three loci are assumed to occur on one arm of the same chromosome. For preferential cross-over formation, one of the three loci affects the tendency for sets of sister chromatids to pair and therefore affects rates of recombination. The models are derived such that the process of double reduction is a function of rates of synaptic partner switches and recombination, as opposed to being independent of these processes. We assume potentially one synaptic partner switch per meiosis. We also assume the coefficient of coincidence is one, such that cross-over events are independent, given a set of cross-over rates. Illustrative cases are examined demonstrating differences in the gamete mode probabilities without and with preferential cross-over formation. Lastly, we explore the accuracy of maximum likelihood estimates of the probability of synaptic partner switches and preferential cross-over formation when the locus controlling preference is at a proximal, middle, or distal location on the chromosome arm. All Supplementary Information is available at https://github.com/ckgriswold/3-locus-autotetraploid-meiosis .


Asunto(s)
Meiosis , Poliploidía , Humanos , Funciones de Verosimilitud , Genotipo , Células Germinativas
6.
Chemosphere ; 322: 138151, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36804633

RESUMEN

Dyes contaminated water has caused various environmental and health impacts in developing countries especially Pakistan due to different industrial activities. This issue has been addressed in present study by fabricating biocompatible ionic liquid (IL) membranes for the remediation of Crystal violet (CV) dye from contaminated water. Novel ammonium-based IL such as Triethyl dimethyl ammonium sulfate ([C3A][C2H6]SO4); (A2) was synthesized and further functionalized with hydroxyapatite (HAp; extracted from refused fish scales) resulting in the formation of HA2. Furthermore, A2 and HA2 were then used to fabricate the cellulose acetate (CA) based membranes with different volume ratios. The physicochemical properties of membranes-based composite materials were investigated using FTIR, XRD, and TGA and used for the adsorption of CV in the closed batch study. In results, CA-HA2 (1:2) showed higher efficiency of 98% for CV reduction, after the contact time of 90 min. Kinetic studies showed that the adsorption of CV followed the pseudo-second-order kinetic model for all adsorbents. The antibacterial properties of the synthesized membrane were investigated against gram-positive strain, S. aureus and CA-A2 (1:1) showed better antibacterial properties against S. aureus. The developed membrane is sustainable to be used for the adsorption of CV and against bacteria.


Asunto(s)
Compuestos de Amonio , Líquidos Iónicos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Cinética , Staphylococcus aureus , Colorantes/química , Violeta de Genciana , Agua , Antibacterianos/farmacología , Contaminación del Agua , Adsorción , Contaminantes Químicos del Agua/química
7.
Chemosphere ; 322: 138078, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36754302

RESUMEN

Conventional homogeneous-based catalyzed transesterification for the production of biodiesel can be replaced with a membrane reactor that has an immobilized heterogeneous catalyst. Combining reaction with separation while utilizing membranes with a certain pore size might boost conversion process. this investigation to study the effectiveness of membrane reactor in combination with heterogeneous green nano catalysis of MnO2. Techniques such as XRD, EDX, FTIR, SEM, and TGA were used to characterize the synthesized MnO2 nano catalyst. The highest conversion of around 94% Trachyspermum ammi oil was obtained by MnO2. The optimum process variables for maximum conversion were catalyst loading of 0.26 (wt.%), 8:1 M ratio, 90 °C reaction temperature, and time 120 min. The green nano catalyst of MnO2 was reusable up to five cycles with minimum loss in conversion rate of about 75% in the fifth cycle. Nuclear magnetic resonance validated the synthesis of methyl esters. It was concluded that membrane reactor a promising technique to efficiently transesterify triglycerides into methyl esters and enable process intensification uses MnO2 as a catalyst.


Asunto(s)
Ammi , Óxidos , Compuestos de Manganeso , Biocombustibles , Esterificación , Ésteres , Aceites de Plantas
8.
Chemosphere ; 319: 137994, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36720415

RESUMEN

Better processing techniques must be utilized widely due to the rising demand for honey. The most common honey processing techniques are applied to melissopalynomorphs to check the quality and quantity of valuable honey using microporous ultrafiltration membranes. It is essential to have the ability to selectively filter out sugars from honey using ultrafiltration. This study authenticated 24 honey samples using membrane reactors ultrafiltration protocol to describe the pollen spectrum of dominant vegetation. The purpose of this study was also to explore nutritional benefits as well as the active phytochemical constituents of honey samples. Honey samples were collected and labeled Acacia, Eucalyptus, and Ziziphus species based on plant resources provided by local beekeepers. A variety of honeybee flora was collected around the apiaries between 2020 and 2021. Honey analysis revealed that the pollen extraction of 24 bee foraging species belonging to 14 families. The honey membrane technology verified the identities of honey and nectar sources. Also, pollen identified using honey ultrafiltration membranes revealed dominant resources: Acacia spp. (69%), Eucalyptus spp. (52%) and Ziziphus spp. Honey filtration using a membrane technology classified 14 samples as unifloral, represented by six dominant pollen types. The absolute pollen count in the honey sample revealed that 58.33% (n = 14) belong to Maurizio's class I. Scanning ultrasculpturing showed diverse exine patterns: reticulate, psilate, scabrate-verrucate, scabrate-gemmate, granulate, perforate, microechinate, microreticulate, and regulate to fossulate for correct identification of honey pollen types. Honey ultrafiltration should be utilized to validate the botanical sources of honey and trace their biogeographic authenticity. Thus, it is imperative to look at the alternative useful method to identify the botanical origin of filtered honey. It is critical to separate honey from adulteration by a standardized protocol. Membrane technology has yielded significant outcomes in the purification of honey.


Asunto(s)
Eucalyptus , Miel , Abejas , Animales , Miel/análisis , Polen/química , Plantas , Néctar de las Plantas , Eucalyptus/química
9.
Chemosphere ; 313: 137422, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36455655

RESUMEN

Membraned Sediment Plant Microbial Fuel cells (SPMFCs) are appealing bioelectrochemical systems that generate power from organic compounds in sediment through exoelectrogen decomposition and are used to treat wastewater. This research was designed to develop a single-chambered sediment plant microbial fuel cell using two membrane electrodes; one carbon plate cathode and one anode. Wastewater and sediment mixture was sampled from Rawalpindi, Pakistan, and bacterial isolation was performed by serial dilution. Five strains were selected on the basis of morphology and growth-promoting characteristics. The selected strains were identified by 16s rRNA sequencing and designated as A (Geobacter sulfurreducens OP527025), B (Shawanella putrefaciens OP522353), C (Bacillus subtilus OP522349), D (Azospirillum humicireducens OP527050) and E (Pseudomonas putida OP526951). Consortium of five strains was developed. Two aquatic plants pennyworts (Hydrocotyle umbellate), and Hyacinth (Eichhornia crassipes) were used in the SPMFCs along with consortium. A maximum voltage of 1120mv was observed in SPMFCs treated with the consortium and water hyacinth, which was followed by 543.3 mv of SPMFCs treated with water pennyworts. Physicochemical analysis of wastewater showed a remarkable reduction of 74.5%, 71%, and 76% in nitrate, phosphate, and sulphate content of wastewater treated with microbes and water hyacinth. The heavy metal analysis showed a reduction of Zn (99.8%), Mg (99.9%), and Ni (98.4%) in SPMFCs treated with the consortium and water hyacinth. Mebraned SPMFCs showed an increase of 30% and 20% in shoot and root length of water hyacinth. A remarkable increase of 25%, 18%, and 12% were recorded in chlorophyll content, membrane stability index and relative water content of water hyacinth in SPMFCs treated with consortium compared to untreated cells. Osmolyte content had shown significant increase of 25% with consortium treated water hyacinth plant as compared to untreated one. An increase of 15%, 20% and 12% was noted in superoxide dismutase (SOD), peroxidase dismutase (POD) and catalase content of consortium treated water hyacinth as compared to control one. The present research gave insight into the potential of sediment plant microbial fuel cells along with aquatic plants for treatment of wastewater. This could be a effective method for removal of hazrdaous substances from wastewater and alternative approach for voltage production.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eichhornia , Hyacinthus , Contaminantes Químicos del Agua , Aguas Residuales , Biodegradación Ambiental , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Compuestos Orgánicos/metabolismo , Eichhornia/metabolismo , Plantas/metabolismo
10.
Chemosphere ; 309(Pt 1): 136622, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181837

RESUMEN

Lubricants operate as antifriction media, preserving machine reliability, facilitating smooth operation, and reducing the likelihood of frequent breakdowns. The petroleum-based reserves are decreasing globally, leading to price increases and raising concerns about environmental degradation. The researchers are concentrating their efforts on developing and commercializing an environmentally friendly lubricant produced from renewable resources. Biolubricants derived from nonedible vegetable oils are environmentally favorable because of their non-toxicity, biodegradability, and close to net zero greenhouse gas emissions. The demand for bio lubricants in industry and other sectors is increasing due to their non-toxic, renewable, and environmentally friendly nature. Good lubrication, anti-corrosion, and high flammability are characteristic properties of vegetable oils due to their unique structure. This study presents several key properties of nonedible oils that are used to produce lubricants via the transesterification process. Bibliometric analysis is also performed, which provides us with a better understanding of previous studies related to the production of bio lubricants from the transesterification process. Only 371 published documents in the Scopus database were found to relate to the production of bio lubricants using the transesterification process. The published work was mostly dominated by research articles (286; 77.088%). Significant development can be seen in recent years, with the highest occurrence in 2021, reaching 68 publications accounting for 18.38% of the total documents. In the second step, (i) the authors with the most number of publications; (ii) journals with the most productions; (iii) most productive countries; and (iv) the authors' most frequently used keywords were evaluated. These results will provide a pathway for researchers interested in this field. Lastly, recommendation is made on research gaps to device possible strategies for its commercialization.


Asunto(s)
Gases de Efecto Invernadero , Petróleo , Reproducibilidad de los Resultados , Lubricantes/química , Aceites de Plantas
11.
Chemosphere ; 309(Pt 1): 136613, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183888

RESUMEN

Pollution harms ecosystems and poses a serious threat to human health around the world through direct or indirect effects on air, water, and land. The importance of remediating effluents is paramount to reducing environmental concerns. CO2 emissions are removed efficiently and efficaciously with mixed matrix membranes (MMMs), which are viable replacements for less efficient and costly membranes. In the field of membrane technology, MMMs are advancing rapidly due to their good separation properties. The selection of filler to be incorporated in mixed matrix membranes is very considered very important. There has been considerable interest in MOFs, carbon nanotubes (CNTs), ionic liquids (ILs), carbon molecular sieves (CMSs), sulfonated fillers (SFs), and layered silicates (LSs) as inorganic fillers for improving the properties of mixed matrix membranes. These fillers promise superb results and long durability for mixed matrix membranes based on them. The purpose of this review is to review different fillers used in MMMs for improving separation properties, limitations, and thermomechanical properties for environmental control and remediation.


Asunto(s)
Restauración y Remediación Ambiental , Líquidos Iónicos , Nanotubos de Carbono , Humanos , Dióxido de Carbono , Ecosistema , Agua
12.
Chemosphere ; 308(Pt 2): 136272, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36067809

RESUMEN

Tonnage oxygen production is still mostly based on the traditional technology of cryogenic distillation, a century-old, capital- and energy-intensive method. It is critical to create a novel low-cost, energy-efficient approach that can meet the growing demand for oxygen in industry from the clean environmental or energy standpoint. Ruddlesden-Popper (RP) perovskite like oxides -based ionic transport membranes for the oxygen transport have recently been developed as a possible replacement for the traditional cryogenic approach. In this work, we detailly reviewed the progress of RP perovskite oxides based membranes for oxygen transport from separation mechanism, material types, synthesis methods to the final separation performance. This work advances the development of RP perovskite membranes for oxygen transport.


Asunto(s)
Compuestos de Calcio , Oxígeno , Óxidos , Titanio
13.
Environ Res ; 215(Pt 2): 114303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116500

RESUMEN

Steroid hormones as a class of emerging organic pollutant and high concern, due to their potential risks for human and environmental. Accurate analytical methods of steroid hormones are necessary in quantifying and monitoring. Biosensor is a promising technique. In this study, though part of 3α-HSD DNA to construct a regulatory plasmid and with the EGFP reporter gene to generate a reporter plasmid. Separately transformed into Escherichia coli strain BL21 and extracted the cell lysates as novel biosensor reagents. Analyzed the total amounts of steroid hormones in water, sediment, and soil samples using biosensor reagents, and compared these results with those obtained by HPLC. In summary, detection method using an EGFP reporter that can detect trace amounts of steroid hormones to reached fg/L. The optimal reaction time range and temperature were 30 min and 30 °C, respectively, while the most suitable organic solvent for the steroid hormone was 100% ethanol, up to 96-well plate format. This method is very suitable for high-throughput detection of environmental steroid hormone pollutants.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Técnicas Biosensibles/métodos , ADN , Escherichia coli/genética , Etanol , Hormonas , Humanos , Indicadores y Reactivos , Suelo , Solventes , Esteroides , Agua
14.
Chemosphere ; 307(Pt 1): 135633, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35810866

RESUMEN

Cadmium (Cd) and Lead (Pb) from industrial wastewater can bioaccumulate in the living organisms of water bodies, posing serious threats to human health. Therefore, efficient remediation of heavy metal ions of Cd (II) and Pb (II) in aqueous media is necessary for public health and environmental sustainability. In the present study, water stable Zirconium (Zr) based metal organic frameworks (MOFs) with SO3H functionalization were synthesized by solvothermal method and used first time for the adsorption of Cd (II) and Pb (II). Synthesis of UiO-66-SO3H, nano-sized (<100 nm) MOFs, was confirmed by FTIR, XRD, FESEM and BET. Effects of contact time, pH and temperature were investigated for adsorption of Cd (II) and Pb (II) onto SO3H-functionalized Zr-MOFs. The UiO-66-SO3H displayed notable rejections of 97% and 88% towards Cd (II) and Pb (II), respectively, after 160 min at 25 °C and pH (6) with an initial concentration of 1000 mg/L. Adsorption capacities of Cd (II) and Pb (II) were achieved as 194.9154 (mg/g) and 176.6879 (mg/g), respectively, at an initial concentration of 1000 mg/L. The Pseudo second-order kinetic model fitted well with linear regression (R2) of value 1. The mechanism was confirmed mainly as a chemisorption and coordination interaction between sulfone group (-SO3H) and metal ions Cd (IIa) and Pb (II). These results may support effective adsorption and can be studied further to enrich and recycle other heavy metals from wastewater.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio/análisis , Humanos , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Metales Pesados/análisis , Ácidos Ftálicos , Sulfonas , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis , Circonio
15.
Chemosphere ; 305: 135483, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35753420

RESUMEN

The mixed ionic-electronic conducting (MIEC) oxides have generated significant research efforts in the scientific community during the last 40 years. Since then, many MIEC compounds, most of which are based on perovskite oxides, have been synthesized and characterized. These compounds, when heated to high temperatures, form solid ceramic membranes with high oxygen ionic and electrical conductivity. The driving force for oxygen ion transport is the ionic transfer of oxygen from the air as a result of the differential partial pressure of oxygen across the membrane. Electronic and ionic transport in a range of MIEC materials has been studied using the defect theory, particularly when dopants are introduced to the compound of interest. As a result, many types of ionic oxygen transport limits exist, each with a distinct phase shift depending on the temperature and partial pressure of oxygen in use. In combination with theoretical principles, this work attempts to evaluate the research community's major and meaningful achievements in this subject throughout the preceding four decades.

16.
Chemosphere ; 303(Pt 1): 134749, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35490754

RESUMEN

Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. This study was carried out in two industrial areas including Okhla and Mohan cooperative in New Delhi, India. The six groundwater samples were obtained for water quality assessment for 2015 and 2018. The heavy metals investigated in water samples were Cu, As, Pb, Mn, Ni, Zn, Fe, Cr, and Mn. The water quality was assessed in the heavy metals index (MI) and heavy metal pollution index (HPI). From indexing approach, it was observed that pollution levels have increased in year 2018 as compared to the year 2015. MI < 1 for Cu in 2015 and 2018 in both industrial areas. In the case of remaining metals, MI ranged from 2.5 to 8.4. When the HPI indexing approach was adopted, water was unfit for drinking in both industrial areas in 2015 and 2018, with an HPI value > 100. Non-carcinogenic risk assessment (HI) ranged from 1.7 to 1.9 in 2015, increasing from 17.41 to 217 in 2018, indicating high risk in both years. Carcinogenic risk (CR) was within the acceptable range for 48% of each heavy metal analysed sample. When the Carcinogenic risk index was considered (CRI), all samples were beyond the acceptable range, and every person was prone to carcinogenic risk in 2015.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Carcinógenos/análisis , Monitoreo del Ambiente , Agua Subterránea/análisis , Humanos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
17.
Bioresour Technol ; 343: 126068, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34626762

RESUMEN

The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.


Asunto(s)
Biocombustibles , Aceites de Plantas , Biomasa , Catálisis , Esterificación , Lignina
18.
Chemosphere ; 291(Pt 2): 132780, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34767846

RESUMEN

The present work investigates the proficiency of green silver oxide nanocatalyst synthesised from Monotheca buxifolia (Falc.) Dcne. leaves extract, and their application for biodiesel synthesis from novel Prunus bokhariensis seed oil (non-edible). The seed oil content of 55% and FFA content of 0.80 mg KOH/g were reported. Several analytical tools (EDX, FT-IR, SEM and XRD) were used to characterise the Ag2O nanocatalyst. Maximum (89%) FAME yield of the PBSOB (Prunus bokhariensis seed oil biodiesel) was achieved at ambient transesterification conditions i.e. 3.5 wt% nanocatalyst loading, 2.5 h reaction time, 130 °C of reaction temperature and 12:1 alcohol to oil ratio. The synthesised PBSOB was additionally characterised by analytical methods like, GC-MS and FT-IR. The different aspects of fuel were identified i.e. flash point (84 °C), kinematic viscosity (4.01 cSt @ 40 °C), sulphur content (0.0003 wt %), density (0.853 kg/L) and acid number (0.167 mg KOH/g). All the above properties were verified and agreed well with biodiesel international standards (European Union (14214), China GB/T (20828) and ASTM (6751, 951). In general, Prunus bokhariensis seed oil and Ag2O nanocatalyst seem to be remarkably active, cheap and stable candidates for the biodiesel industry in future.


Asunto(s)
Biocombustibles , Prunus , Biocombustibles/análisis , Catálisis , Esterificación , Óxidos , Aceites de Plantas , Compuestos de Plata , Espectroscopía Infrarroja por Transformada de Fourier
19.
Chemosphere ; 278: 130469, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33839393

RESUMEN

The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.


Asunto(s)
Biocombustibles , Aceites de Plantas , Biocombustibles/análisis , Catálisis , Esterificación , Níquel , Espectroscopía Infrarroja por Transformada de Fourier
20.
Bioresour Technol ; 328: 124859, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33621759

RESUMEN

The potential of new trimetallic (Ce, Cu, La) loaded montmorillonite clay catalyst for synthesizing biodiesel using novel non-edible Celastrus paniculatus Willd seed oil via two-step transesterification reaction has been reported along with catalyst characterization. Transesterification reaction was optimized and maximum biodiesel yield of 89.42% achieved under optimal operating reaction states like; 1:12 oil to methanol ratio, 3.5% of catalyst amount, 120 °C of reaction temperature for 3 h. The predicted and experimental biodiesel yields under these reaction conditions were 89.42 and 89.40%, which showing less than 0.05% variation. Additionally, optimum biodiesel yield can be predicted by drawing 3D surface plots and 2D contour plots using MINITAB 17 software. For the characterization of the obtained biodiesel, analysis including the GC/MS, FT-IR, 1H NMR and 13C NMR were applied. The fuel properties of obtained biodiesel agrees well with the different European Union (EU-14214), China (GB/T 20828), and American (ASTM-951, 6751) standards.


Asunto(s)
Bentonita , Biocombustibles , Biocombustibles/análisis , Catálisis , China , Esterificación , Aceites de Plantas/análisis , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...