Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591586

RESUMEN

Carbonated hydroxyapatite (CHAp) adsorbent material was prepared from Achatina achatina snail shells and phosphate-containing solution using a wet chemical deposition method. The CHAp adsorbent material was investigated to adsorb aqua Fe(II) complex; [Fe(H2O)6]2+ from simulated iron contaminated water for potential iron remediation application. The CHAp was characterized before and after adsorption using infrared (IR) and Raman spectroscopy. The IR and the Raman data revealed that the carbonate functional groups of the CHAp adsorbent material through asymmetric orientation in water bonded strongly to the aqua Fe(II) complex adsorbate. The adsorption behaviour of the adsorbate onto the CHAp adsorbent correlated well to pseudo-second-order kinetics model, non-linear Langmuir and Freundlich model at room temperature of a concentration (20-100 mg L-1) and contact time of 180 min. The Langmuir model estimated the maximum adsorption capacity to be 45.87 mg g-1 whereas Freundlich model indicated an S-type isotherm curvature which supported the spectroscopy revelation.

2.
Int J Biomater ; 2020: 2630735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488718

RESUMEN

Magnetic Fe3O4 nanoparticles were synthesized from maize leaves and plantain peels extract mediators. Particles were characterized, and the inhibitory effects were studied on HeLa cells in vitro using cyclic voltammetry (CV). Voltammograms from the CV show that Fe3O4 NPs interaction with HeLa cells affected their electrochemical behavior. The nanoparticles formed with higher Fe3+/Fe2+ molar ratio (2.8 : 1) resulted in smaller crystallite sizes compared to those formed with lower Fe3+/Fe2+ molar ratio (1.4 : 1). The particles with the smallest crystallite size showed higher anodic peak currents, whereas the larger crystallite sizes resulted in lower anodic peak currents. The peak currents relate to cell inhibition and are confirmed by the half-maximum inhibitory concentration (IC50). The findings show that the particles have a different inhibitory mechanism on HeLa cells ion transfer and are promising to be further exploited for cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...