Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cell Biol ; 11: 85, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21044324

RESUMEN

BACKGROUND: Mutations in the Abnormal Spindle Microcephaly related gene (ASPM) are the commonest cause of autosomal recessive primary microcephaly (MCPH) a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC). RESULTS: We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM) at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. CONCLUSIONS: These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical neurogenesis, causing the MCPH phenotype.


Asunto(s)
Citocinesis , Proteínas del Tejido Nervioso/metabolismo , Huso Acromático/ultraestructura , División Celular , Línea Celular , Citoesqueleto , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microtúbulos/metabolismo , Mitosis , Mutación , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Sitios de Empalme de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo
2.
Nat Genet ; 32(2): 316-20, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12355089

RESUMEN

One of the most notable trends in mammalian evolution is the massive increase in size of the cerebral cortex, especially in primates. Humans with autosomal recessive primary microcephaly (MCPH) show a small but otherwise grossly normal cerebral cortex associated with mild to moderate mental retardation. Genes linked to this condition offer potential insights into the development and evolution of the cerebral cortex. Here we show that the most common cause of MCPH is homozygous mutation of ASPM, the human ortholog of the Drosophila melanogaster abnormal spindle gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts. The mouse gene Aspm is expressed specifically in the primary sites of prenatal cerebral cortical neurogenesis. Notably, the predicted ASPM proteins encode systematically larger numbers of repeated 'IQ' domains between flies, mice and humans, with the predominant difference between Aspm and ASPM being a single large insertion coding for IQ domains. Our results and evolutionary considerations suggest that brain size is controlled in part through modulation of mitotic spindle activity in neuronal progenitor cells.


Asunto(s)
Corteza Cerebral/anatomía & histología , Proteínas de Drosophila , Proteínas del Tejido Nervioso/genética , Antropometría , Northern Blotting , Codón sin Sentido , Femenino , Humanos , Masculino , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Linaje , Análisis de Secuencia de ADN
3.
DNA Seq ; 13(1): 47-53, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12180137

RESUMEN

The Smad family of proteins have been implicated as major components of the TGF beta signalling pathway and are important mediators of its pleiotrophic effects. Here we describe the cloning and characterization of the mink (Mustela vison) ortholog of Smad4. Mink Smad4 has a high level of conservation to its human counterpart showing 96% homology at the DNA level and 99% at the amino acid level. This is in agreement with the close homologies seen for the rat and mouse orthologs. In vitro transcription and translation shows the expression of a protein of predicted molecular weight, of identical size to its human counterpart.


Asunto(s)
Proteínas de Unión al ADN/genética , Transactivadores/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Secuencia Conservada , ADN Complementario , Pulmón , Visón/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Proteína Smad4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...