Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 119: 119-129, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34229949

RESUMEN

Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones
2.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910978

RESUMEN

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Tejido Adiposo , Animales , Humanos , Inflamación , Macrófagos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...