Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2021: 3094571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34725636

RESUMEN

Obesity is a chronic metabolic and noncommunicable disease that affects 50% of world population. Reactive oxygen species and oxidative stress are interconnected with the obesity and several metabolic disorders, gaining the attention of scientific community to combat this problem naturally. Among various fruits, mango as a yellow fruit is rich in polyphenols, carotenoids, terpenes, and flavonoids that act as antioxidants to protect against free radicals produced in the body. The present study was performed to explore in vivo antioxidant potential of mango peels against dyslipidemia and oxidative stress in overweight subjects. The female volunteers (n = 31) between 25 and 45 years of age having a body mass index (BMI) of 25.0-29.9 (overweight) were included in this study, while participants with complications as diabetes, hypertension, cardiovascular, and liver diseases were excluded. The treatment group consumed 1 g mango peel powder for 84 days. The subjects were analyzed for biochemical analysis, antioxidant status, and anthropometric measurements at baseline and end of the study period. Further, at the end of study, the safety evaluation tests were also performed. The results showed that upon consumption of mango peel powder, low-density lipoproteins (LDL), cholesterol, triglyceride, urea, and creatinine levels were decreased and high-density lipoprotein (HDL) level was increased (P ≤ 0.05), while thiobarbituric acid reactive substances (TBARS) showed increased antioxidant status (P ≤ 0.05) which suggests that mango peels have a strong management potential against oxidative stress and dyslipidemia in obese subjects.


Asunto(s)
Dislipidemias/dietoterapia , Mangifera/metabolismo , Obesidad/dietoterapia , Adulto , Antioxidantes/química , Índice de Masa Corporal , Carotenoides/metabolismo , Femenino , Flavonoides/análisis , Frutas/química , Humanos , Obesidad/metabolismo , Sobrepeso/dietoterapia , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/análisis
2.
Biotechnol Bioeng ; 106(5): 707-20, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20564609

RESUMEN

The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion.


Asunto(s)
Biomasa , Biotecnología/métodos , Enzimas/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Zea mays/metabolismo , Automatización , Enzimas/genética , Enzimas/aislamiento & purificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Glucosa/metabolismo , Pichia/genética , Proteínas Recombinantes/metabolismo , Temperatura , Factores de Tiempo , Trichoderma/enzimología , Trichoderma/genética , Xilosa/metabolismo
3.
Fungal Genet Biol ; 46(5): 427-35, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19373972

RESUMEN

Based on the analysis of its genome sequence, the ectomycorrhizal (ECM) basidiomycetous fungus Laccaria bicolor was shown to be lacking many of the major classes of secreted enzymes that depolymerize plant cell wall polysaccharides. To test whether this is also a feature of other ECM fungi, we searched a survey genome database of Amanita bisporigera with the proteins found in the secretome of Trichoderma reesei (syn. Hypocrea jecorina), a biochemically well-characterized industrial fungus. Additional proteins were also used as queries to compensate for major groups of cell-wall-degrading enzymes lacking in the secretome of T. reesei and to substantiate conclusions drawn from the T. reesei collection. By MS/MS-based "shotgun" proteomics, 80 proteins were identified in culture filtrates of T. reesei strain RUTC30 grown on corn cell walls and in a commercial "cellulase" preparation, Spezyme CP. The two T. reesei enzyme preparations were qualitatively and quantitatively similar, the most striking difference being the lack of at least five major peptidases from the commercial enzyme mixture. Based on our analysis of A. bisporigera, this ECM fungus is deficient in many major classes of cell-wall-degrading enzymes, including both glycosyl hydrolases and carbohydrate esterases. By comparison, the genomes of the saprophytic basidiomycetes Coprinopsis cinerea and Galerina marginata (using a genome survey sequence approximately equivalent in depth to that of A. bisporigera) have, like T. reesei, a much more complete complement of cell-wall-degrading enzymes.


Asunto(s)
Amanita/enzimología , Amanita/genética , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zea mays/metabolismo , Medios de Cultivo/química , Proteínas Fúngicas/análisis , Genómica , Proteoma/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...