Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
PLoS One ; 16(10): e0258684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34673795

RESUMEN

AIMS: Patients with cardiovascular comorbidities have a significantly increased risk for a critical course of COVID-19. As the SARS-CoV2 virus enters cells via the angiotensin-converting enzyme receptor II (ACE2), drugs which interact with the renin angiotensin aldosterone system (RAAS) were suspected to influence disease severity. METHODS AND RESULTS: We analyzed 1946 consecutive patients with cardiovascular comorbidities or hypertension enrolled in one of the largest European COVID-19 registries, the Lean European Open Survey on SARS-CoV-2 (LEOSS) registry. Here, we show that angiotensin II receptor blocker intake is associated with decreased mortality in patients with COVID-19 [OR 0.75 (95% CI 0,59-0.96; p = 0.013)]. This effect was mainly driven by patients, who presented in an early phase of COVID-19 at baseline [OR 0,64 (95% CI 0,43-0,96; p = 0.029)]. Kaplan-Meier analysis revealed a significantly lower incidence of death in patients on an angiotensin receptor blocker (ARB) (n = 33/318;10,4%) compared to patients using an angiotensin-converting enzyme inhibitor (ACEi) (n = 60/348;17,2%) or patients who received neither an ACE-inhibitor nor an ARB at baseline in the uncomplicated phase (n = 90/466; 19,3%; p<0.034). Patients taking an ARB were significantly less frequently reaching the mortality predicting threshold for leukocytes (p<0.001), neutrophils (p = 0.002) and the inflammatory markers CRP (p = 0.021), procalcitonin (p = 0.001) and IL-6 (p = 0.049). ACE2 expression levels in human lung samples were not altered in patients taking RAAS modulators. CONCLUSION: These data suggest a beneficial effect of ARBs on disease severity in patients with cardiovascular comorbidities and COVID-19, which is linked to dampened systemic inflammatory activity.


Asunto(s)
Antagonistas de Receptores de Angiotensina/administración & dosificación , Tratamiento Farmacológico de COVID-19 , COVID-19 , Hipertensión , Sistema de Registros , SARS-CoV-2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Biomarcadores/sangre , COVID-19/sangre , COVID-19/mortalidad , Comorbilidad , Supervivencia sin Enfermedad , Femenino , Humanos , Hipertensión/sangre , Hipertensión/tratamiento farmacológico , Hipertensión/mortalidad , Inflamación/sangre , Inflamación/tratamiento farmacológico , Inflamación/mortalidad , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
3.
Pediatr Cardiol ; 42(7): 1554-1566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34046720

RESUMEN

Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.


Asunto(s)
Corazón , Infarto del Miocardio , Animales , Animales Recién Nacidos , Proliferación Celular , Fibrosis , Ratones , Miocitos Cardíacos/patología , Ratas , Regeneración
4.
Sci Rep ; 10(1): 7994, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409701

RESUMEN

Meis1, which belongs to TALE-type class of homeobox gene family, appeared as one of the key regulators of hematopoietic stem cell (HSC) self-renewal and a potential therapeutical target. However, small molecule inhibitors of MEIS1 remained unknown. This led us to develop inhibitors of MEIS1 that could modulate HSC activity. To this end, we have established a library of relevant homeobox family inhibitors and developed a high-throughput in silico screening strategy against homeodomain of MEIS proteins using the AutoDock Vina and PaDEL-ADV platform. We have screened over a million druggable small molecules in silico and selected putative MEIS inhibitors (MEISi) with no predicted cytotoxicity or cardiotoxicity. This was followed by in vitro validation of putative MEIS inhibitors using MEIS dependent luciferase reporter assays and analysis in the ex vivo HSC assays. We have shown that small molecules named MEISi-1 and MEISi-2 significantly inhibit MEIS-luciferase reporters in vitro and induce murine (LSKCD34l°w cells) and human (CD34+, CD133+, and ALDHhi cells) HSC self-renewal ex vivo. In addition, inhibition of MEIS proteins results in downregulation of Meis1 and MEIS1 target gene expression including Hif-1α, Hif-2α and HSC quiescence modulators. MEIS inhibitors are effective in vivo as evident by induced HSC content in the murine bone marrow and downregulation of expression of MEIS target genes. These studies warrant identification of first-in-class MEIS inhibitors as potential pharmaceuticals to be utilized in modulation of HSC activity and bone marrow transplantation studies.


Asunto(s)
Desarrollo de Medicamentos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Biomarcadores , Células de la Médula Ósea , Proliferación Celular , Evaluación Preclínica de Medicamentos , Citometría de Flujo , Genes Reporteros , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/química , Conformación Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
5.
Curr Cancer Drug Targets ; 19(6): 479-494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30182856

RESUMEN

BACKGROUND: c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence. OBJECTIVE: Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion. METHODS AND RESULTS: Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclindependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose-derived mesenchymal stem cells, however, it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression. CONCLUSION: These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Oxadiazoles/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Animales , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Lisina/análogos & derivados , Lisina/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Óxido Nítrico Sintasa/antagonistas & inhibidores , Recombinasa Rad51/biosíntesis , Recombinasa Rad51/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Ácido Tauroquenodesoxicólico/farmacología
6.
Adv Exp Med Biol ; 1079: 37-53, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29064067

RESUMEN

The common prevalence of heart failure and limitations in its treatment are leading cause of attention and interest towards the induction of cardiac regeneration with novel approaches. Recent studies provide growing evidence regarding bona fide cardiac regeneration post genetic manipulations, administration of stimulatory factors and myocardial injuries in animal models and human studies. To this end, stem cells of different sources have been tested to treat heart failure for the development of cellular therapies. Endogenous and exogenous stem cells sources used in regenerative cardiology have provided a proof of concept and applicability of cellular therapies in myocardial improvement. Recent clinical studies, especially, based on the endogenous cardiac progenitor and stem cells highlighted the possibility to regenerate lost cardiomyocytes in the myocardium. This review discusses emerging concepts in cardiac stem cell therapy, their sources and route of administration, and plausibility of de novo cardiomyocyte formation.


Asunto(s)
Cardiología , Miocitos Cardíacos/citología , Medicina Regenerativa , Trasplante de Células Madre , Células Madre/citología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Miocardio
7.
Anatol J Cardiol ; 16(11): 881-886, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27872447

RESUMEN

Heart has long been considered a terminally differentiated organ. Recent studies, however, have suggested that there is a modest degree of cardiomyocyte (CM) turnover in adult mammalian heart, albeit not sufficient for replacement of lost CMs following cardiac injuries. Cardiac regeneration studies in various model organisms including zebrafish, newt, and more recently in neonatal mouse, have demonstrated that CM dedifferentiation and concomitant proliferation play important roles in replacement of lost CMs and restoration of cardiac contractility. Further studies with neonatal cardiac regeneration mouse model suggested that major source of new CMs is existing CMs, with the possibility of involvement of cardiac stem cells. Numerous studies have now been conducted on induction of cardiac regeneration and have identified various cardiogenic factors, cardiogenic micro ribonucleic acid and cardiogenic small molecules. This report is a review of studies regarding generation of CM and prospects for application.


Asunto(s)
Proliferación Celular , Miocitos Cardíacos , Regeneración , Animales , Ciclo Celular , Corazón , Ratones , Salamandridae , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA