Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37987012

RESUMEN

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.

2.
Front Cell Dev Biol ; 11: 1113656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776558

RESUMEN

Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.

3.
PLoS Genet ; 15(4): e1008088, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034465

RESUMEN

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Catarata/genética , Trastornos de la Motilidad Ciliar/genética , Enanismo/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Adolescente , Adulto , Niño , Consanguinidad , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Linaje , Fenotipo , Adulto Joven
4.
Ann Hematol ; 93(8): 1401-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24994606

RESUMEN

We assessed the prognostic impact of TET2 mutations and mRNA expression in a prospective cohort of 357 adult AML patients < 60 years of age enrolled in the European Organization For Research and Treatment of Cancer (EORTC)/Gruppo Italiano Malattie Ematologiche dell' Adulto (GIMEMA) AML-12 06991 clinical trial. In addition the co-occurrence with other genetic defects and the functional consequences of TET2 mutations were investigated. TET2 mutations occurred in 7.6 % of the patients and were an independent marker of poor prognosis (p = 0.024). TET2 and IDH1/2 mutations strongly associated with aberrations in the DNA methyltransferase DNMT3A. Functional studies confirmed previous work that neither nonsense truncations, nor missense TET2 mutations, induced 5-hydroxymethylcytosine formation. In addition, we now show that mutant TET2 forms did not act in a dominant negative manner when co-expressed with the wild-type protein. Finally, as loss-of-function TET2 mutations predicted poor outcome, we questioned whether low TET2 mRNA expression in cases of AML without TET2 mutations would affect overall survival. Notably, also AML patients with low TET2 mRNA expression levels showed inferior overall survival.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/análogos & derivados , Adolescente , Adulto , Animales , Células COS , Chlorocebus aethiops , Ensayos Clínicos como Asunto , Citosina/análogos & derivados , Citosina/análisis , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/fisiología , Dioxigenasas , Femenino , Humanos , Isocitrato Deshidrogenasa/genética , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Masculino , Estudios Multicéntricos como Asunto , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/fisiología , Pronóstico , Estudios Prospectivos , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Adulto Joven
5.
Blood ; 124(7): 1110-8, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24986689

RESUMEN

Patients with acute myeloid leukemia (AML) frequently harbor mutations in genes involved in the DNA (hydroxy)methylation pathway (DNMT3A, TET2, IDH1, and IDH2). In this study, we measured 5-hydroxymethylcytosine (5hmC) levels in 206 clinically and molecularly well-characterized younger adult AML patients (≤60 years) included in the European Organization for Research and Treatment of Cancer/Gruppo Italiano Malattie Ematologiche dell'Adulto (EORTC/GIMEMA) AML-12 06991 clinical trial and correlated the 5hmC levels with mutational status and overall survival (OS). In healthy control cells, 5hmC levels were confined to a narrow range (1.5-fold difference), whereas in AML cells, a much wider range was detected (15-fold difference). We identified 3 5hmC subpopulations in our patient cohort (low, intermediate, and high). The low 5hmC group consisted almost entirely of patients with TET2 or IDH mutations. As expected, TET2 and IDH mutated patients had significantly lower levels of 5hmC compared with patients without mutated TET2 and IDH1/2 (both P < .001). Interestingly, high 5hmC levels correlated with inferior OS (high vs intermediate 5hmC: P = .047, hazard ratio [HR] = 1.81). Multivariate analysis revealed that high 5hmC is an independent poor prognostic indicator for OS (high vs intermediate 5hmC: P = .01, HR = 2.10). This trial was registered at www.clinicaltrials.gov as NCT00004128.


Asunto(s)
Citosina/análogos & derivados , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Mutación , 5-Metilcitosina/análogos & derivados , Enfermedad Aguda , Adolescente , Adulto , Anciano , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Metiltransferasa 3A , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide/patología , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Análisis de Supervivencia , Adulto Joven
6.
Cilia ; 1(1): 2, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23351521

RESUMEN

BACKGROUND: Mutations in the gene for Usher syndrome 2A (USH2A) are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB) in the retina. RESULTS: We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG)5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we found that Spag5 was widely expressed during murine embryonic development, with prominent signals in the eye, cochlea, brain, kidney and liver. SPAG5 expression in adult human tissues was detected by quantitative PCR, which identified expression in the retina, brain, intestine, kidney and testis. In the retina, Spag5, Ush2aisoB and NinlisoB were present at several subcellular structures of photoreceptor cells, and colocalized at the basal bodies. CONCLUSIONS: Based on these results and on the suggested roles for USH proteins in vesicle transport and providing structural support to both the inner ear and the retina, we hypothesize that SPAG5, USH2AisoB and NINLisoB may function together in microtubule-based cytoplasmic trafficking of proteins that are essential for cilium formation, maintenance and/or function.

8.
Nat Genet ; 41(7): 838-42, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19483684

RESUMEN

Myelodysplastic syndromes (MDS) represent a heterogeneous group of neoplastic hematopoietic disorders. Several recurrent chromosomal aberrations have been associated with MDS, but the genes affected have remained largely unknown. To identify relevant genetic lesions involved in the pathogenesis of MDS, we conducted SNP array-based genomic profiling and genomic sequencing in 102 individuals with MDS and identified acquired deletions and missense and nonsense mutations in the TET2 gene in 26% of these individuals. Using allele-specific assays, we detected TET2 mutations in most of the bone marrow cells (median 96%). In addition, the mutations were encountered in various lineages of differentiation including CD34(+) progenitor cells, suggesting that TET2 mutations occur early during disease evolution. In healthy tissues, TET2 expression was shown to be elevated in hematopoietic cells with highest expression in granulocytes, in line with a function in myelopoiesis. We conclude that TET2 is the most frequently mutated gene in MDS known so far.


Asunto(s)
Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Síndromes Mielodisplásicos/genética , Proteínas Proto-Oncogénicas/genética , Antígenos CD34/metabolismo , Dioxigenasas , Dosificación de Gen , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...