Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(12): e0167286, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27918591

RESUMEN

Neonatal mouse cochlear supporting cells have a limited ability to divide and trans-differentiate into hair cells, but this ability declines rapidly in the two weeks after birth. This decline is concomitant with the morphological and functional maturation of the organ of Corti prior to the onset of hearing. However, despite this association between maturation and loss of regenerative potential, little is known of the molecular changes that underlie these events. To identify these changes, we used RNA-seq to generate transcriptional profiles of purified cochlear supporting cells from 1- and 6-day-old mice. We found many significant changes in gene expression during this period, many of which were related to regulation of proliferation, differentiation of inner ear components and the maturation of the organ of Corti prior to the onset of hearing. One example of a change in regenerative potential of supporting cells is their robust production of hair cells in response to a blockade of the Notch signaling pathway at the time of birth, but a complete lack of response to such blockade just a few days later. By comparing our supporting cell transcriptomes to those of supporting cells cultured in the presence of Notch pathway inhibitors, we show that the transcriptional response to Notch blockade disappears almost completely in the first postnatal week. Our results offer some of the first molecular insights into the failure of hair cell regeneration in the mammalian cochlea.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/fisiología , Audición/genética , Receptores Notch/genética , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Oído Interno/fisiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos ICR , Órgano Espiral/fisiología , Regeneración/genética , Transducción de Señal/genética
2.
J Vis Exp ; (113)2016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-27500543

RESUMEN

Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.


Asunto(s)
Reprogramación Celular , Fibroblastos , Citometría de Flujo , Células Madre Pluripotentes Inducidas
3.
Stem Cell Rev Rep ; 11(2): 357-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25504379

RESUMEN

Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Medicina Regenerativa , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
4.
PLoS One ; 9(1): e85419, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416407

RESUMEN

Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Receptores de Hialuranos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Células Clonales , Células Nutrientes/citología , Fibroblastos/citología , Citometría de Flujo , Humanos , Receptores de Hialuranos/genética , Inmunohistoquímica , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Ratones
6.
Development ; 138(13): 2823-32, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21652654

RESUMEN

The proneural protein neurogenin 2 (NGN2) is a key transcription factor in regulating both neurogenesis and neuronal radial migration in the embryonic cerebral cortex. However, the co-factors that support the action of NGN2 in the cortex remain unclear. Here, we show that the LIM-only protein LMO4 functions as a novel co-factor of NGN2 in the developing cortex. LMO4 and its binding partner nuclear LIM interactor (NLI/LDB1/CLIM2) interact with NGN2 simultaneously, forming a multi-protein transcription complex. This complex is recruited to the E-box containing enhancers of NGN2-target genes, which regulate various aspects of cortical development, and activates NGN2-mediated transcription. Correspondingly, analysis of Lmo4-null embryos shows that the loss of LMO4 leads to impairments of neuronal differentiation in the cortex. In addition, expression of LMO4 facilitates NGN2-mediated radial migration of cortical neurons in the embryonic cortex. Our results indicate that LMO4 promotes the acquisition of cortical neuronal identities by forming a complex with NGN2 and subsequently activating NGN2-dependent gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas con Dominio LIM , Ratones , Proteínas del Tejido Nervioso/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA