Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352207

RESUMEN

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Asunto(s)
Carcinogénesis/genética , Metiltransferasas/genética , Neoplasias/genética , ARNt Metiltransferasas/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Metilación , Neoplasias/patología , Oncogenes/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN de Transferencia/genética
2.
Nature ; 593(7860): 597-601, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33902106

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Adenosina/análogos & derivados , Animales , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Curr Opin Hematol ; 28(2): 80-85, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337619

RESUMEN

PURPOSE OF REVIEW: In recent years, the N6-methyladenosine (m6A) modification of RNA has been shown to play an important role in the development of acute myeloid leukemia (AML) and the maintenance of leukemic stem cells (LSCs). In this review we summarise the recent findings in the field of epitranscriptomics related to m6A and its relevance in AML. RECENT FINDINGS: Recent studies have focused on the role of m6A regulators in the development of AML and their potential as translational targets. The writer Methyltransferase Like 3 and its binding partner Methyltransferase Like 14, as well as the reader YTH domain-containing family protein 2, were shown to be vital for LSC survival, and their loss has detrimental effects on AML cells. Similar observations were made with the demethylases fat mass and obesity-associated protein and AlkB homologue 5 RNA demethylase. Of importance, loss of any of these genes has little to no effect on normal hemopoietic stem cells, suggesting therapeutic potential. SUMMARY: The field of epitranscriptomics is still in its infancy and the importance of m6A and other RNA-modifications in AML will only come into sharper focus. The development of therapeutics targeting RNA-modifying enzymes may open up new avenues for treatment of such malignancies.


Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ARN/metabolismo , Adenosina/metabolismo , Animales , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Epigenómica/métodos , Humanos , Leucemia Mieloide Aguda/patología , Metilación , ARN/genética
4.
Leukemia ; 35(4): 1012-1022, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32764680

RESUMEN

Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-CoA to lysine residues of histones and play a central role in transcriptional regulation in diverse biological processes. Dysregulation of HAT activity can lead to human diseases including developmental disorders and cancer. Through genome-wide CRISPR-Cas9 screens, we identified several HATs of the MYST family as fitness genes for acute myeloid leukemia (AML). Here we investigate the essentiality of lysine acetyltransferase KAT7 in AMLs driven by the MLL-X gene fusions. We found that KAT7 loss leads to a rapid and complete loss of both H3K14ac and H4K12ac marks, in association with reduced proliferation, increased apoptosis, and differentiation of AML cells. Acetyltransferase activity of KAT7 is essential for the proliferation of these cells. Mechanistically, our data propose that acetylated histones provide a platform for the recruitment of MLL-fusion-associated adaptor proteins such as BRD4 and AF4 to gene promoters. Upon KAT7 loss, these factors together with RNA polymerase II rapidly dissociate from several MLL-fusion target genes that are essential for AML cell proliferation, including MEIS1, PBX3, and SENP6. Our findings reveal that KAT7 is a plausible therapeutic target for this poor prognosis AML subtype.


Asunto(s)
Reordenamiento Génico , Predisposición Genética a la Enfermedad , Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Apoptosis/genética , Biomarcadores de Tumor , Diferenciación Celular , Línea Celular Tumoral , Manejo de la Enfermedad , Epigénesis Genética , Técnicas de Inactivación de Genes , Estudios de Asociación Genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Células Mieloides/metabolismo , Células Mieloides/patología , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Regiones Promotoras Genéticas , Unión Proteica
5.
ACS Cent Sci ; 6(12): 2196-2208, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33376781

RESUMEN

The fates of RNA species in a cell are controlled by ribonucleases, which degrade them by exploiting the universal structural 2'-OH group. This phenomenon plays a key role in numerous transformative technologies, for example, RNA interference and CRISPR/Cas13-based RNA editing systems. These approaches, however, are genetic or oligomer-based and so have inherent limitations. This has led to interest in the development of small molecules capable of degrading nucleic acids in a targeted manner. Here we describe click-degraders, small molecules that can be covalently attached to RNA species through click-chemistry and can degrade them, that are akin to ribonucleases. By using these molecules, we have developed the meCLICK-Seq (methylation CLICK-degradation Sequencing) a method to identify RNA modification substrates with high resolution at intronic and intergenic regions. The method hijacks RNA methyltransferase activity to introduce an alkyne, instead of a methyl, moiety on RNA. Subsequent copper(I)-catalyzed azide-alkyne cycloaddition reaction with the click-degrader leads to RNA cleavage and degradation exploiting a mechanism used by endogenous ribonucleases. Focusing on N6-methyladenosine (m6A), meCLICK-Seq identifies methylated transcripts, determines RNA methylase specificity, and reliably maps modification sites in intronic and intergenic regions. Importantly, we show that METTL16 deposits m6A to intronic polyadenylation (IPA) sites, which suggests a potential role for METTL16 in IPA and, in turn, splicing. Unlike other methods, the readout of meCLICK-Seq is depletion, not enrichment, of modified RNA species, which allows a comprehensive and dynamic study of RNA modifications throughout the transcriptome, including regions of low abundance. The click-degraders are highly modular and so may be exploited to study any RNA modification and design new technologies that rely on RNA degradation.

6.
Nat Commun ; 9(1): 5378, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568163

RESUMEN

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina/metabolismo , Epigénesis Genética , Células HL-60 , Hematopoyesis , Humanos , Células K562 , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN
7.
Nature ; 552(7683): 126-131, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29186125

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia.


Asunto(s)
Adenosina/análogos & derivados , Regulación Neoplásica de la Expresión Génica/genética , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Metiltransferasas/metabolismo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Adenosina/genética , Adenosina/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Genes Relacionados con las Neoplasias/genética , Humanos , Leucemia Mieloide Aguda/patología , Metiltransferasas/química , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Biosíntesis de Proteínas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...