Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(42): 16650-16663, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36205705

RESUMEN

Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.


Asunto(s)
Medios de Contraste , Protones , Ligandos , Medios de Contraste/química , Estructura Molecular , DEET , Cristalografía por Rayos X , Piridinas/química , Amidas/química , Compuestos Ferrosos/química , Oxígeno , Nitrógeno , Agua
2.
Curr Cancer Drug Targets ; 22(3): 245-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35135451

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is known for Warburg effect and defects in the mitochondria. AMP-dependent kinase (AMPK) activates the downstream transcription factors PGC-1α, PGC-1ß, or FOXO1, which participate in mitochondrial biogenesis. 5- aminoimidazole-4-carboxamide riboside (AICAR) is an analog of adenosine monophosphate and is a direct activator of AMPK. OBJECTIVES: In the present study, we have made an attempt to understand the influence of AICAR on TNBC cells, MDA-MB-231, and the underlying changes in mitochondrial biogenesis, if any. METHODS: We investigated AICAR induced changes in cell viability, apoptosis, migratory potential, and changes in the sensitivity of doxorubicin. RESULTS: In response to the treatment of MDA-MB-231 breast cancer cells with 750 µM of AICAR for 72 hours, followed by 48 hours in fresh media without AICAR, we observed a decrease in viability via MTT assay, reduction in cell numbers along with the apoptotic appearance, increased cell death by ELISA, decreased lactate in conditioned medium and decrease in migration by scratch and transwell migration assays. These changes in the cancer phenotype were accompanied by an increase in mitochondrial biogenesis, as observed by increased mitochondrial DNA to nuclear DNA ratio, a decrease in lactic acid concentration, an increase in MitoTracker green and red staining, and increased expression of transcription factors PGC-1α, NRF-1, NRF-2, and TFAM, contributing to mitochondrial biogenesis. Pre-treatment of cells with AICAR for 72 hours followed by 48 hours treatment with 1 µM doxorubicin showed an increased sensitivity to doxorubicin as assessed by the MTT assay. CONCLUSION: Our results show that AICAR exerts beneficial effects on TNBC cells, possibly via switching off the Warburg effect and switching on the anti-Warburg effect through mitochondrial modulation.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Doxorrubicina/farmacología , Humanos , Imidazoles , Mitocondrias , Ribonucleótidos , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
3.
Emerg Top Life Sci ; 5(1): 151-168, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33760078

RESUMEN

Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Sustancias Macromoleculares
4.
Commun Biol ; 4(1): 200, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589717

RESUMEN

Particle identification and selection, which is a prerequisite for high-resolution structure determination of biological macromolecules via single-particle cryo-electron microscopy poses a major bottleneck for automating the steps of structure determination. Here, we present a generalized deep learning tool, CASSPER, for the automated detection and isolation of protein particles in transmission microscope images. This deep learning tool uses Semantic Segmentation and a collection of visually prepared training samples to capture the differences in the transmission intensities of protein, ice, carbon, and other impurities found in the micrograph. CASSPER is a semantic segmentation based method that does pixel-level classification and completely eliminates the need for manual particle picking. Integration of Contrast Limited Adaptive Histogram Equalization (CLAHE) in CASSPER enables high-fidelity particle detection in micrographs with variable ice thickness and contrast. A generalized CASSPER model works with high efficiency on unseen datasets and can potentially pick particles on-the-fly, enabling data processing automation.


Asunto(s)
Microscopía por Crioelectrón , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Proteínas/ultraestructura , Imagen Individual de Molécula , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Semántica
5.
Artículo en Inglés | MEDLINE | ID: mdl-28034279

RESUMEN

BACKGROUND: Number of contradictory reports are available on the effects of antiinflammatory drugs on Alzheimer's disease (AD) including beneficial, adverse and stage dependent effects. We provide insights of the effects exerted by some anti-inflammatory drugs on the chemistry of AD. METHODS: Three different doses of dexamethasone (0.015, 0.030, 0.060 µM), piroxicam (5, 7.5, 10 µM), indomethacin (1, 1.25, 1.50 µM), diclofenac (0.6, 0.8, 1.0 µM), aspirin (90, 120, 150 µM) and celecoxib (30, 45, 60 µM) were used. Rivastigmine, methylene blue and butylated hydroxyanisole were used as standard drug, oligomerization inhibitor and antioxidant, respectively. Oligomerization and fibrillization reactions were performed using Aß1-42 peptides. Results-Indomethacin and aspirin mainly inhibited oligomerization, while rivastigmine and piroxicam inhibited fibrillization. Diclofenac and celecoxib inhibited both oligomerization and fibrillization almost equally. Dexamethasone showed poor efficiency on both the processes, but exert comparably more inhibition of oligomerization than fibrillization. Inhibition of acetylcholinesterase activity was also potent and was in the following order: celecoxib> piroxicam> diclofenac> aspirin> indomethacin> dexamethasone. Strong radical scavenging (More than 50%) activity was showed by indomethacin and aspirin for NO radicals. CONCLUSION: Present study consistently revealed that anti-inflammatory drugs have potential to Modulate chemistry of AD progression. Inclusion of anti-inflammatory drugs in low doses along with routine therapies may provide therapeutically and economically more efficient therapies for AD. However, further studies are warranted, because the overall therapeutic effect seems to be the function of stage of disease, dose of drug, main underlying mechanism of action(s).


Asunto(s)
Acetilcolinesterasa/química , Péptidos beta-Amiloides/química , Amiloide/química , Antiinflamatorios no Esteroideos/química , Fragmentos de Péptidos/química , Antioxidantes/química , Aspirina/química , Hidroxianisol Butilado/química , Celecoxib/química , Dexametasona/química , Diclofenaco/química , Indometacina/química , Azul de Metileno/química , Óxido Nítrico/química , Piroxicam/química , Rivastigmina/química , Oxígeno Singlete/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA