Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mediators Inflamm ; 2021: 9940009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712101

RESUMEN

Alloxan (ALX) and streptozotocin (STZ) are extensively used to induce type 1 diabetes (T1D) in animal models. This study is aimed at evaluating the differences in immune parameters caused by ALX and STZ. T1D was induced either with ALX or with STZ, and the animals were followed for up to 180 days. Both ALX and STZ induced a decrease in the total number of circulating leukocytes and lymphocytes, with an increase in granulocytes when compared to control mice (CT). STZ-treated mice also exhibited an increase in neutrophils and a reduction in the lymphocyte percentage in the bone marrow. In addition, while the STZ-treated group showed a decrease in total CD3+, CD4-CD8+, and CD4+CD8+ T lymphocytes in the thymus and CD19+ B lymphocytes in the pancreas and spleen, the ALX group showed an increase in CD4-CD8+ and CD19+ only in the thymus. Basal levels of splenic interleukin- (IL-) 1ß and pancreatic IL-6 in the STZ group were decreased. Both diabetic groups showed atrophy of the thymic medulla and degeneration of pancreatic islets of Langerhans composed of inflammatory infiltration and hyperemia with vasodilation. ALX-treated mice showed a decrease in reticuloendothelial cells, enhanced lymphocyte/thymocyte cell death, and increased number of Hassall's corpuscles. Reduced in vitro activation of splenic lymphocytes was found in the STZ-treated group. Furthermore, mice immunized with ovalbumin (OVA) showed a more intense antigen-specific paw edema response in the STZ-treated group, while production of anti-OVA IgG1 antibodies was similar in both groups. Thereby, important changes in immune cell parameters in vivo and in vitro were found at an early stage of T1D in the STZ-treated group, whereas alterations in the ALX-treated group were mostly found in the chronic phase of T1D, including increased mortality rates. These findings suggest that the effects of ALX and STZ influenced, at different times, lymphoid organs and their cell populations.


Asunto(s)
Aloxano/toxicidad , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/inmunología , Linfocitos/efectos de los fármacos , Estreptozocina/toxicidad , Animales , Glucemia/análisis , Citocinas/biosíntesis , Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/patología , Bazo/efectos de los fármacos , Bazo/inmunología , Timo/efectos de los fármacos , Timo/patología
2.
Front Immunol ; 12: 681671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349757

RESUMEN

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.


Asunto(s)
Aedes/inmunología , Colitis/etiología , Colitis/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Proteínas y Péptidos Salivales/inmunología , Secuencia de Aminoácidos , Animales , Biomarcadores , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Inmunomodulación , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas y Péptidos Salivales/química , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
PLoS One ; 16(2): e0245788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556084

RESUMEN

Acetaminophen (N-acetyl-p-aminophenol, APAP) overdose is the most common cause of drug-induced liver injury (DILI). Although the primary hepatic damage is induced by APAP-derived toxic intermediates resulting from cytochrome P450 metabolism, immune components also play an important role in DILI pathophysiology. Aedes aegypti saliva is a source of bioactive molecules with in vitro anti-inflammatory and immunomodulatory activities. However, evidences on the therapeutic use of Ae. aegypti salivary preparations in animal models of relevant clinical conditions are still scarce. Thus, the present study was designed to evaluate the protective role of Ae. aegypti saliva in a murine model of APAP-induced DILI. C57BL/6 mice were exposed to Ae. aegypti bites 2 hours after APAP overdose. Biochemical and immunological parameters were evaluated in blood and liver samples at different time points after APAP administration. Exposure to Ae. aegypti saliva attenuated liver damage, as demonstrated by reduced hepatic necrosis and serum levels of alanine aminotransferase in APAP-overdosed mice. The levels of hepatic CYP2E1, the major enzyme responsible for the bioactivation of APAP, were not changed in Ae. aegypti exposed animals, suggesting no effects in the generation of hepatotoxic metabolites. On the other hand, mice treated with Ae. aegypti saliva following APAP overdose presented lower serum concentration of TNF-α, IL-6, IL-1ß and IL-10, as well as reduced frequency of inflammatory cell populations in the liver, such as NKT cells, macrophages and dendritic cells. These findings show that Ae. aegypti saliva has bioactive molecules with therapeutic properties and may represent a prospective source of new compounds in the management of DILI-associated inflammatory disorders and, perhaps, many other inflammatory/autoimmune diseases.


Asunto(s)
Acetaminofén/efectos adversos , Aedes/fisiología , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Factores Inmunológicos/metabolismo , Mordeduras y Picaduras de Insectos/inmunología , Saliva/metabolismo , Alanina Transaminasa/sangre , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Citocromo P-450 CYP2E1/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Front Immunol, v. 12, 681671, jul. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3918

RESUMEN

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.

5.
Immunology ; 158(1): 47-59, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31315156

RESUMEN

During probing and blood feeding, haematophagous mosquitoes inoculate a mixture of salivary molecules into their vertebrate hosts' skin. In addition to the anti-haemostatic and immunomodulatory activities, mosquito saliva also triggers acute inflammatory reactions, especially in sensitized hosts. Here, we characterize the oedema and the cellular infiltrate following Aedes aegypti mosquito bites in the skin of sensitized and non-sensitized BALB/c mice by flow cytometry. Ae. aegypti bites induced an increased oedema in the ears of both non-sensitized and salivary gland extract- (SGE-)sensitized mice, peaking at 6 hr and 24 hr after exposure, respectively. The quantification of the total cell number in the ears revealed that the cellular recruitment was more robust in SGE-sensitized mice than in non-sensitized mice, and the histological evaluation confirmed these findings. The immunophenotyping performed by flow cytometry revealed that mosquito bites were able to produce complex changes in cell populations present in the ears of non-sensitized and SGE-sensitized mice. When compared with steady-state ears, the leucocyte populations significantly recruited to the skin after mosquito bites in non-sensitized and sensitized mice were eosinophils, neutrophils, monocytes, inflammatory monocytes, mast cells, B-cells and CD4+ T-cells, each one with its specific kinetics. The changes in the absolute number of cells suggested two cell recruitment profiles: (i) a saliva-dependent migration; and (ii) a migration dependent on the immune status of the host. These findings suggest that mosquito bites influence the skin microenvironment by inducing differential cell migration, which is dependent on the degree of host sensitization to salivary molecules.


Asunto(s)
Aedes/inmunología , Quimiotaxis de Leucocito , Edema/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Leucocitos/inmunología , Mastocitos/inmunología , Saliva/inmunología , Piel/inmunología , Animales , Microambiente Celular , Modelos Animales de Enfermedad , Femenino , Cinética , Masculino , Ratones Endogámicos BALB C , Infiltración Neutrófila
6.
JCI Insight ; 4(10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31092731

RESUMEN

Virulent protozoans named Leishmania in tropical and subtropical areas produce devastating diseases by exploiting host immune responses. Amastigotes of Leishmania amazonensis stimulate macrophages to express CD200, an immunomodulatory ligand, which binds to its cognate receptor (CD200R) and inhibits the inducible nitric oxide synthase and nitric oxide (iNOS/NO) signaling pathways, thereby promoting intracellular survival. However, the mechanisms underlying CD200 induction in macrophages remain largely unknown. Here, we show that phagocytosis-mediated internalization of L. amazonensis amastigotes following activation of endosomal TLR9/MyD88/TRIF signaling is critical for inducing CD200 in infected macrophages. We also demonstrate that Leishmania microvesicles containing DNA fragments activate TLR9-dependent CD200 expression, which inhibits the iNOS/NO pathway and modulates the course of L. amazonensis infection in vivo. These findings demonstrate that Leishmania exploits TLR-signaling pathways not only to inhibit macrophage microbicidal function, but also to evade host systemic immune responses, which has many implications in the severity of the disease.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antígenos CD/metabolismo , Leishmaniasis/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 9/metabolismo , Animales , Antígenos CD/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata , Leishmania , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptor Toll-Like 9/genética , Receptores Toll-Like/genética , Virulencia
7.
Parasit Vectors ; 11(1): 435, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053916

RESUMEN

BACKGROUND: The horn fly Haematobia irritans is a blood-sucking ectoparasite responsible for substantial economic loss of livestock. Like other hematophagous arthropods species, the successful blood-feeding of H. irritans is highly dependent on the modulation of the host's hemostasis and immune system. Here, we evaluated the biological activity of hematobin (HTB), a protein recently identified in the H. irritans saliva, on macrophage biology. The goal was to understand the putative interactions between the components of H. irritans saliva and the early host immune responses. RESULTS: Thioglycolate-elicited peritoneal macrophages from BALB/c mice were stimulated by lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) in the presence or absence of recombinant HTB. The presence of the salivary protein in the cultures inhibited nitric oxide production and decreased the inducible nitric oxide synthase (iNOS) expression induced by LPS plus IFN-γ. The tumor necrosis factor-α (TNF-α) and interleukin-12p40 (IL-12p40) levels were also reduced in the macrophages pre-incubated with HTB; these findings correlated to the decreased NF-κB expression. The biological activities described here were not associated with changes in annexin V binding to macrophages suggesting that HTB does not induce cell death. In addition, the activity of HTB seems to be specific to macrophages because no changes were observed in lymphocyte proliferation or cytokine production. CONCLUSIONS: We describe here the first bioactive salivary protein of H. irritans. We characterized its ability to modulate macrophage inflammatory response, and the results can help explain how horn flies modulate the host immune system to feed on blood.


Asunto(s)
Dípteros/metabolismo , Inflamación/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Citocinas , Dinoprostona , Regulación de la Expresión Génica/efectos de los fármacos , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II , Bazo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...