Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 377(6601): 95-100, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35549311

RESUMEN

The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed propagating for four (plus three antipodal) passages around Earth over 6 days. As measured by the Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally detected infrasound (0.01 to 20 hertz), long-range (~10,000 kilometers) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. Here, we highlight exceptional observations of the atmospheric waves.


Asunto(s)
Atmósfera , Sonido , Erupciones Volcánicas , Tonga
2.
Sci Rep ; 11(1): 20783, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675366

RESUMEN

Earthquakes are known to generate ionospheric disturbances that are commonly referred to as co-seismic travelling ionospheric disturbances (CTID). In this work, for the first time, we present a novel method that enables to automatically detect CTID in ionospheric GNSS-data, and to determine their spatio-temporal characteristics (velocity and azimuth of propagation) in near-real time (NRT), i.e., less than 15 min after an earthquake. The obtained instantaneous velocities allow us to understand the evolution of CTID and to estimate the location of the CTID source in NRT. Furthermore, also for the first time, we developed a concept of real-time travel-time diagrams that aid to verify the correlation with the source and to estimate additionally the propagation speed of the observed CTID. We apply our methods to the Mw7.4 Sanriku earthquake of 09/03/2011 and the Mw9.0 Tohoku earthquake of 11/03/2011, and we make a NRT analysis of the dynamics of CTID driven by these seismic events. We show that the best results are achieved with high-rate 1 Hz data. While the first tests are made on CTID, our method is also applicable for detection and determining of spatio-temporal characteristics of other travelling ionospheric disturbances that often occur in the ionosphere driven by many geophysical phenomena.

3.
Sci Rep ; 10(1): 5232, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251306

RESUMEN

Using the specific satellite line of sight geometry and station location with respect to the source, Thomas et al. [Scientific Reports, https://doi.org/10.1038/s41598-018-30476-9] developed a method to infer the detection altitude of co-seismic ionospheric perturbations observed in Global Positioning System (GPS) - Total Electron Content (TEC) measurements during the Mw 7.4 March 9, 2011 Sanriku-Oki earthquake, a foreshock of the Mw 9.0, March 11, 2011 Tohoku-Oki earthquake. Therefore, in addition to the spatio-temporal evolution, the altitude information of the seismically induced ionospheric signatures can also be derived now using GPS-TEC technique. However, this method considered a point source, in terms of a small rupture area (~90 km) during the Tohoku foreshock, for the generation of seismo-acoustic waves in 3D space and time. In this article, we explore further efficacy of GPS-TEC technique during co-seismic ionospheric sounding for an extended seismic source varying simultaneously in space and time akin to the rupture of Mw 9.0 Tohoku-Oki mainshock and the limitations to be aware of in such context. With the successful execution of the method by Thomas et al. during the Tohoku-Oki mainshock, we not only estimate the detection altitude of GPS-TEC derived co-seismic ionospheric signatures but also delineate, for the first time, distinct ground seismic sources responsible for the generation of these perturbations, which evolved during the initial 60 seconds of the rupture. Simulated tsunami water excitation over the fault region, to envisage the evolution of crustal deformation in space and time along the rupture, formed the base for our model analysis. Further, the simulated water displacement assists our proposed novel approach to delineate the ground seismic sources entirely based on the ensuing ionospheric perturbations which were otherwise not well reproduced by the ground rupture process within this stipulated time. Despite providing the novel information on the segmentation of the Tohoku-Oki seismic source based on the co-seismic ionospheric response to the initial 60 seconds of the event, our model could not reproduce precise rupture kinematics over this period. This shortcoming is also credited to the specific GPS satellite-station viewing geometries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...