Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Mater ; 35(18): e2209729, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36745861

RESUMEN

Fingertip perspiration is a vital process within human predation, to which the species owes its survival and its biological success. In this paper, the unique human ability of extensive perspiration and controlled friction in self-assembled cholesteric liquid crystals is recreated, mimicking the natural processes that occur in the dermis and epidermis of human skin. This is achieved by inducing porosity in responsive, liquid-bearing material through the controlled-polymerization phase-separation process. The unique topography of human fingerprints is further emulated in the materials by balancing the parallel chirality-induced force and the perpendicular substrate-anchoring force during synthesis. As a result, artificial fingertips are capable of secreting and re-absorbing liquid upon light illumination. By demonstrating the function of the soft material in a tribological aspect, it exhibits a controllable anti-sliding property comparable to human fingertips and subsequently attains a higher degree of biomimicry. This biomimetic fingertip is envisioned being applied in a multitude of fields, ranging from biomedical instruments to interactive, human-like soft robotic devices.


Asunto(s)
Dedos , Piel , Humanos , Epidermis , Polimerizacion , Sudor
2.
Soft Matter ; 18(37): 7236-7244, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102867

RESUMEN

Self-regulation is an essential aspect in the practicality of electronic systems, ranging from household heaters to robots for industrial manufacturing. In such devices, self-regulation is conventionally achieved through separate sensors working in tandem with control modules. In this paper, we harness the reversible actuating properties of liquid crystal oligomer network (LCON) polymers to design a self-regulated oscillator. A dynamic equilibrium is achieved by applying a thermally-responsive and electrically-functionalized LCON film as a dual-action component, namely as a combined electrical switch and composite actuating sensor, within a circuit. This hybrid circuit configuration, consisting of both inorganic and organic material, generates a self-regulated feedback loop which cycles regularly and indefinitely. The feedback loop cycle frequency is tunable between approximately 0.08 and 0.87 Hz by altering multiple factors, such as supplied power or LCON chemistry. Our research aims to drive the material-to-device transition of stimuli-responsive LCONs, striving towards applications in electronic soft robotics.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35142206

RESUMEN

There is an increasing interest in animating materials to develop dynamic surfaces. These dynamic surfaces can be utilized for advanced applications, including switchable wetting, friction, and lubrication. Dynamic surfaces can also improve existing technologies, for example, by integrating self-cleaning surfaces on solar cells. In this Spotlight on Applications, we describe our most recent advances in liquid crystal polymer network (LCN) dynamic surfaces, focusing on substrate-based topographies and dynamic porous networks. We discuss our latest insights in the mechanisms of deformation with the "free volume" principle. We illustrate the scope of LCN technology through various examples of photo-/electropatterning, free-volume channeling, oscillating/programmable network distortion, and porous LCNs. Finally, we close by discussing prominent applications of LCNs and their outlook.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...