Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Pathol ; 203: 31-35, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37244160

RESUMEN

The Greenland shark (Somniosus microcephalus) is a large species of shark found in the North Atlantic and Arctic Oceans and is believed to be the longest living vertebrate. Relatively little is known about its biology, abundance, health or diseases. In March 2022, only the third reported UK stranding of this species occurred and it was the first to undergo post-mortem examination. The animal was a sexually immature female, measuring 3.96 m in length and 285 kg in weight, and was in poor nutritional state. Gross findings included haemorrhages in the skin and soft tissues, particularly of the head, and silt in the stomach suggestive of live stranding, bilateral corneal opacity, slightly turbid cerebrospinal fluid (CSF) and patchy congestion of the brain. Histopathological findings included keratitis and anterior uveitis, fibrinonecrotic and lymphohistiocytic meningitis of the brain and proximal spinal cord and fibrinonecrotizing choroid plexitis. A near pure growth of a Vibrio organism was isolated from CSF. This is believed to be the first report of meningitis in this species.


Asunto(s)
Monitoreo del Ambiente , Tiburones , Animales , Femenino , Regiones Árticas
2.
J Appl Ecol ; 56(11): 2390-2399, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34565831

RESUMEN

Culling wildlife as a form of disease management can have unexpected and sometimes counterproductive outcomes. In the UK, badgers Meles meles are culled in efforts to reduce badger-to-cattle transmission of Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). However, culling has previously been associated with both increased and decreased incidence of M. bovis infection in cattle.The adverse effects of culling have been linked to cull-induced changes in badger ranging, but such changes are not well-documented at the individual level. Using GPS-collars, we characterized individual badger behaviour within an area subjected to widespread industry-led culling, comparing it with the same area before culling and with three unculled areas.Culling was associated with a 61% increase (95% CI 27%-103%) in monthly home range size, a 39% increase (95% CI 28%-51%) in nightly maximum distance from the sett, and a 17% increase (95% CI 11%-24%) in displacement between successive GPS-collar locations recorded at 20-min intervals. Despite travelling further, we found a 91.2 min (95% CI 67.1-115.3 min) reduction in the nightly activity time of individual badgers associated with culling. These changes became apparent while culls were ongoing and persisted after culling ended.Expanded ranging in culled areas was associated with individual badgers visiting 45% (95% CI 15%-80%) more fields each month, suggesting that surviving individuals had the opportunity to contact more cattle. Moreover, surviving badgers showed a 19.9-fold increase (95% CI 10.8-36.4-fold increase) in the odds of trespassing into neighbouring group territories, increasing opportunities for intergroup contact.Synthesis and applications. Badger culling was associated with behavioural changes among surviving badgers which potentially increased opportunities for both badger-to-badger and badger-to-cattle transmission of Mycobacterium bovis. Furthermore, by reducing the time badgers spent active, culling may have reduced badgers' accessibility to shooters, potentially undermining subsequent population control efforts. Our results specifically illustrate the challenges posed by badger behaviour to cull-based TB control strategies and furthermore, they highlight the negative impacts culling can have on integrated disease control strategies.

3.
Appl Microbiol Biotechnol ; 78(3): 391-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18189137

RESUMEN

The overexpression of the antiapoptotic gene Bcl-2 has been previously shown to protect cells from undergoing apoptosis during exposure to environmental stress. There is strong evidence that, in addition to its well-known effects on apoptosis, Bcl-2 is involved in antioxidant protection and regulation of cell cycle progression. To determine if the overexpression of Bcl-2 could improve the process of adaptation to suspension and protein-free growth environments, we have studied the growth and viability of anchorage-dependent Chinese hamster ovary cell lines that differ only in there expression of Bcl-2. In addition, we examined the effect of combining Bcl-2 and p21CIP1 expression during adaptation to suspension and protein-free environments. The results of this study provide evidence of a clear reduction in the overall time required for the process of adaptation to both suspension and protein-free environments in Bcl-2 expressing cultures and that through the combined expression of p21CIP1 and Bcl-2, it is possible to further reduce the time. The Bcl-2 results support the well-demonstrated concept that this protein plays an important role in apoptotic signaling pathways and suggest that it may also provide more diverse functions beside its death-inhibiting role.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Células CHO , Recuento de Células , Técnicas de Cultivo de Célula , Línea Celular , Cricetinae , Cricetulus , Medio de Cultivo Libre de Suero
4.
J Biotechnol ; 130(3): 282-90, 2007 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-17544163

RESUMEN

The up-regulation of cyclin-dependent kinase inhibitor p21 has been shown to enhance productivity of monoclonal antibodies and has been linked to various regulatory processes. To identify the potential role of p21 in adaptation to suspension and protein-free cultures, we studied the survival and growth of anchorage- and serum-dependent CHO cell lines that differed only in the period of p21-induced arrest. p21 overexpression led to rapid adaptation of cells to suspension and protein-free cultures. The period taken to achieve adaptation was correlated with the time the cells were arrested after transfer from the monolayer and serum-fed culture. Interestingly, cell aggregation associated with protein-free suspension culture was reduced in p21 culture in response to the loss of cellular adherence. The processes of adaptation to suspension and arrest did not decrease monoclonal antibody productivity. In contrast, following adaptation to protein-free growth media, an overall increase in specific productivity was observed. The ability of cells to survive in protein-free suspension cultures was due to the requirement of G1 cells to growth factors and to their relatively high resistance to the hydrodynamic forces. This improved process has the advantage of reducing the duration of critical path activity for developing CHO commercial cell lines from 72 to 36 days.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Animales , Células CHO , Agregación Celular , Técnicas de Cultivo de Célula , Ciclo Celular , Línea Celular , Cricetinae , Cricetulus , Medio de Cultivo Libre de Suero/farmacología , Expresión Génica , Humanos , Ratones , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...