Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 103(1): 143-154, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37073097

RESUMEN

Reductions in a limiting nutrient might be expected to necessitate compromises in the functional traits that depend on that nutrient; yet populations existing in locations with low levels of such nutrients often do not show the expected degradation of functional traits. Indeed, logperch (Percina caprodes), pumpkinseed sunfish (Lepomis gibbosus) and yellow perch (Perca flavescens) residing in low-calcium water in the Upper St. Lawrence River were all previously found to maintain levels of scale calcium comparable to those of conspecific populations in high-calcium water. Yet it remains possible that the maintenance of one functional trait (i.e., scale calcium) under nutrient-limited (i.e., low calcium) conditions could come at the expense of maintaining other functional traits that depend on the same nutrient. The present study therefore examines other calcium-dependent traits, specifically skeletal element sizes and bone densities in the same fish species in the same area. Using radiographs of 101 fish from the three species across four locations (two in high-calcium water and two in low-calcium water), this new work documents multi-trait "homeostasis" along the gradient of water calcium. That is, no effect of calcium regime (low-calcium vs. high-calcium) was detected on any of the measured variables. Further, effect sizes for the skeletal traits were very low - lower even than effect sizes previously documented for scale calcium. These results thus show that native fishes maintain phenotypic stability across a suite of functional traits linked to calcium regulation, perhaps pointing to an "organismal-level homeostasis" scenario rather than a "trait-level homeostasis" scenario.


Asunto(s)
Percas , Contaminantes Químicos del Agua , Animales , Calcio , Peces , Percas/fisiología , Ríos , Agua
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193976

RESUMEN

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Asunto(s)
Guías como Asunto , Lagos , Salinidad , Calidad del Agua , Animales , Efectos Antropogénicos , Ecosistema , Europa (Continente) , América del Norte , Zooplancton
3.
Evol Appl ; 12(7): 1287-1304, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31417615

RESUMEN

Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.

4.
J Evol Biol ; 31(5): 735-752, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532568

RESUMEN

The evolutionary consequences of temporal variation in selection remain hotly debated. We explored these consequences by studying threespine stickleback in a set of bar-built estuaries along the central California coast. In most years, heavy rains induce water flow strong enough to break through isolating sand bars, connecting streams to the ocean. New sand bars typically re-form within a few weeks or months, thereby re-isolating populations within the estuaries. These breaching events cause severe and often extremely rapid changes in abiotic and biotic conditions, including shifts in predator abundance. We investigated whether this strong temporal environmental variation can maintain within-population variation while eroding adaptive divergence among populations that would be caused by spatial variation in selection. We used neutral genetic markers to explore population structure and then analysed how stickleback armor traits, the associated genes Eda and Pitx1 and elemental composition (%P) varies within and among populations. Despite strong gene flow, we detected evidence for divergence in stickleback defensive traits and Eda genotypes associated with predation regime. However, this among-population variation was lower than that observed among other stickleback populations exposed to divergent predator regimes. In addition, within-population variation was very high as compared to populations from environmentally stable locations. Elemental composition was strongly associated with armor traits, Eda genotype and the presence of predators, thus suggesting that spatiotemporal variation in armor traits generates corresponding variation in elemental phenotypes. We conclude that gene flow, and especially temporal environmental variation, can maintain high levels of within-population variation while reducing, but not eliminating, among-population variation driven by spatial environmental variation.


Asunto(s)
Adaptación Fisiológica , Ambiente , Estuarios , Smegmamorpha/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...