Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746462

RESUMEN

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

2.
Biomolecules ; 14(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540785

RESUMEN

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.


Asunto(s)
Degeneración Macular , Humanos , Mutación , Penetrancia , Linaje , Degeneración Macular/genética , Retina , Fenotipo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas del Ojo , Proteínas Relacionadas con las Cadherinas , Proteínas del Tejido Nervioso/genética
3.
EBioMedicine ; 100: 104983, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38365322

RESUMEN

BACKGROUND: Prenatal hCMV infections can lead to severe embryopathy and neurological sequelae in neonates. Screening during pregnancy is not recommended by global societies, as there is no effective therapy. Recently, several groups showed that maternal-fetal hCMV transmission can be strongly reduced by administering anti-viral agents early in pregnancy. This calls for a screening method to identify at risk pregnancies at an appropriate gestational age, with the possibility for large-scale enrolment. Non-Invasive Prenatal Testing (NIPT) for fetal aneuploidy screening early in pregnancy is already implemented in many countries and performed on a large-scale basis. We investigated the use of whole genome cell-free DNA (cfDNA) sequencing data, generated for the purpose of NIPT, as (pre-)screening tool to identify women with active hCMV-infections, eligible for therapy. METHODS: Coded raw sequencing NIPT data from 204,818 pregnant women from three testing laboratories were analyzed for the presence of hCMV-cfDNA. Samples were stratified by cfDNA-hCMV load. For validation and interpretation, diagnostic hCMV-qPCR and serology testing were performed on a subset of cfDNA-hCMV-positive (n = 112) and -negative (n = 127) samples. FINDINGS: In 1930 samples (0.94%) hCMV fragments were detected. Validation by hCMV-qPCR showed that samples with high cfDNA-hCMV load tested positive and cfDNA-hCMV-negative samples tested negative. In 32/112 cfDNA-hCMV-positive samples (28.6%) the serological profile suggested a recent primary infection: this was more likely in samples with high cfDNA-hCMV load (78.6%) than in samples with low cfDNA-hCMV load (11.0%). In none of the cfDNA-hCMV-negative samples serology was indicative of a recent primary infection. INTERPRETATION: Our study shows that large-scale (pre-)screening for both genetic fetal aberrations and active maternal hCMV infections during pregnancy can be combined in one cfDNA sequencing test, performed on a single blood sample, drawn in the first trimester of pregnancy. FUNDING: This work was partly funded by the Prenatal Screening Foundation Nijmegen, the Netherlands.


Asunto(s)
Ácidos Nucleicos Libres de Células , Citomegalovirus , Recién Nacido , Humanos , Femenino , Embarazo , Citomegalovirus/genética , Mujeres Embarazadas , Aneuploidia , Diagnóstico Prenatal/métodos
4.
Neurooncol Adv ; 5(1): vdad152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130902

RESUMEN

Background: Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods: GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results: WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions: Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.

5.
PLoS Genet ; 19(8): e1010889, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578974

RESUMEN

Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Secuenciación del Exoma , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , 17-Hidroxiesteroide Deshidrogenasas/genética
7.
Mol Ther Methods Clin Dev ; 29: 522-531, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37305852

RESUMEN

Mutations in the lebercilin-encoding gene LCA5 cause one of the most severe forms of Leber congenital amaurosis, an early-onset retinal disease that results in severe visual impairment. Here, we report on the generation of a patient-specific cellular model to study LCA5-associated retinal disease. CRISPR-Cas9 technology was used to correct a homozygous nonsense variant in LCA5 (c.835C>T; p.Q279∗) in patient-derived induced pluripotent stem cells (iPSCs). The absence of off-target editing in gene-corrected (isogenic) control iPSCs was demonstrated by whole-genome sequencing. We differentiated the patient, gene-corrected, and unrelated control iPSCs into three-dimensional retina-like cells, so-called retinal organoids. We observed opsin and rhodopsin mislocalization to the outer nuclear layer in patient-derived but not in the gene-corrected or unrelated control organoids. We also confirmed the rescue of lebercilin expression and localization along the ciliary axoneme within the gene-corrected organoids. Here, we show the potential of combining precise single-nucleotide gene editing with the iPSC-derived retinal organoid system for the generation of a cellular model of early-onset retinal disease.

8.
Ophthalmol Sci ; 3(4): 100303, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37250922

RESUMEN

Purpose: Myopia (nearsightedness) is a condition in which a refractive error (RE) affects vision. Although common variants explain part of the genetic predisposition (18%), most of the estimated 70% heritability is missing. Here, we investigate the contribution of rare genetic variation because this might explain more of the missing heritability in the more severe forms of myopia. In particular, high myopia can lead to blindness and has a tremendous impact on a patient and at the societal level. The exact molecular mechanisms behind this condition are not yet completely unraveled, but whole genome sequencing (WGS) studies have the potential to identify novel (rare) disease genes, explaining the high heritability. Design: Cross-sectional study performed in the Netherlands. Participants: We investigated 159 European patients with high myopia (RE > -10 diopters). Methods: We performed WGS using a stepwise filtering approach and burden analysis. The contribution of common variants was calculated as a genetic risk score (GRS). Main Outcome Measures: Rare variant burden, GRS. Results: In 25% (n = 40) of these patients, there was a high (> 75th percentile) contribution of common predisposing variants; that is, these participants had higher GRSs. In 7 of the remaining 119 patients (6%), deleterious variants in genes associated with known (ocular) disorders, such as retinal dystrophy disease (prominin 1 [PROM1]) or ocular development (ATP binding cassette subfamily B member 6 [ABCB6], TGFB induced factor homeobox 1 [TGIF1]), were identified. Furthermore, without using a gene panel, we identified a high burden of rare variants in 8 novel genes associated with myopia. The genes heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) (proportion in study population vs. the Genome Aggregation Database (GnomAD) 0.14 vs. 0.03, P = 4.22E-17), RNA binding motif protein 20 (RBM20) (0.15 vs. 0.06, P = 4.98E-05), and MAP7 domain containing 1 (MAP7D1) (0.19 vs. 0.06, P = 1.16E-10) were involved in the Wnt signaling cascade, melatonin degradation, and ocular development and showed most biologically plausible associations. Conclusions: We found different contributions of common and rare variants in low and high grade myopia. Using WGS, we identified some interesting candidate genes that could explain the high myopia phenotype in some patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

9.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36785559

RESUMEN

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores del ARN , Mutación , Linaje , Retinitis Pigmentosa/diagnóstico , Secuenciación Completa del Genoma , Proteínas de la Matriz Extracelular/genética
10.
J Pediatr Surg ; 58(4): 723-728, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36586783

RESUMEN

BACKGROUND: Hirschsprung disease (HSCR) is a complex genetic disease characterized by the absence of ganglion cells in the intestines, leading to a functional obstruction in infants. At least 24 genes have been identified for the pathogenesis of HSCR. They contributed to approximately 72% of HSCR cases. We aimed to elucidate further the genetic basis of HSCR in Indonesia using the whole-exome sequencing (WES) approach. METHODS: WES was performed in 39 sporadic non-syndromic HSCR patients and 16 non-HSCR subjects as controls. Variants presented in controls were excluded, followed by in silico prediction tools and population allele frequency databases to select rare variants. We determined the minor allele frequency (MAF) using gnomAD (MAF <0.1%). RESULTS: We involved 24 (61.5%) males and 15 (38.5%) females. Most patients (62%) had short-segment aganglionosis and underwent the Duhamel procedure (41%). We identified several candidate novel variants in HSCR-related genes, including UBR4, GDNF, and ECE1. Moreover, we also identified some novel candidate genes, including a possible compound heterozygous variant in the MUTYH gene: the first variant, a known protein-truncating variant associated with colorectal cancer (CRC), p.Glu452Ter and the second variant is novel, p.Ala39Val. Moreover, the type of variants was not associated with the aganglionosis type. CONCLUSIONS: We identified several novel genes and variants, including the variant associated with CRC, that might contribute to the pathogenesis of HSCR. No genotype-phenotype associations were noted. Our study further confirms the complex network involved in enteric nervous system development and HSCR pathogenesis. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Enfermedad de Hirschsprung , Masculino , Femenino , Humanos , Secuenciación del Exoma , Enfermedad de Hirschsprung/genética , Estudios de Asociación Genética , Indonesia
11.
Clin Genet ; 102(5): 414-423, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053979

RESUMEN

Early onset drusen maculopathy (EODM) can lead to advanced macular degeneration at a young age, affecting quality of life. However, the genetic causes of EODM are not well studied. We performed whole genome sequencing in 49 EODM patients. Common genetic variants were analysed by calculating genetic risk scores based on 52 age-related macular generation (AMD)-associated variants, and we analysed rare variants in candidate genes to identify potential deleterious variants that might contribute to EODM development. We demonstrate that the 52 AMD-associated variants contributed to EODM, especially variants located in the complement pathway. Furthermore, we identified 26 rare genetic variants predicted to be pathogenic based on in silico prediction tools or based on reported pathogenicity in literature. These variants are located predominantly in the complement and lipid metabolism pathways. Last, evaluation of 18 genes causing inherited retinal dystrophies that can mimic AMD characteristics, revealed 11 potential deleterious variants in eight EODM patients. However, phenotypic characteristics did not point towards a retinal dystrophy in these patients. In conclusion, this study reports new insights into rare variants that are potentially involved in EODM development, and which are relevant for future studies unravelling the aetiology of EODM.


Asunto(s)
Factor H de Complemento , Degeneración Macular , Factor H de Complemento/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Calidad de Vida , Secuenciación Completa del Genoma
12.
NPJ Genom Med ; 7(1): 37, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672333

RESUMEN

The USH2A variant c.2276 G > T (p.(Cys759Phe)) has been described by many authors as a frequent cause of autosomal recessive retinitis pigmentosa (arRP). However, this is in contrast with the description of two asymptomatic individuals homozygous for this variant. We therefore assessed pathogenicity of the USH2A c.2276 G > T variant using extensive genetic and functional analyses. Whole genome sequencing and optical genome mapping were performed for three arRP cases homozygous for USH2A c.2276 G > T to exclude alternative genetic causes. A minigene splice assay was designed to investigate the effect of c.2276 G > T on pre-mRNA splicing, in presence or absence of the nearby c.2256 T > C variant. Moreover, an ush2ap.(Cys771Phe) zebrafish knock-in model mimicking human p.(Cys759Phe) was generated and characterized using functional and immunohistochemical analyses. Besides the homozygous c.2276 G > T USH2A variant, no alternative genetic causes were identified. Evaluation of the ush2ap.(Cys771Phe) zebrafish model revealed strongly reduced levels of usherin expression at the photoreceptor periciliary membrane, increased levels of rhodopsin localization in the photoreceptor cell body and decreased electroretinogram (ERG) b-wave amplitudes compared to wildtype controls. In conclusion, we confirmed pathogenicity of USH2A c.2276 G > T (p.(Cys759Phe)). Consequently, cases homozygous for c.2276 G > T can now receive a definite genetic diagnosis and can be considered eligible for receiving future QR-421a-mediated exon 13 skipping therapy.

13.
Genet Med ; 24(6): 1283-1296, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35346573

RESUMEN

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Asunto(s)
ADN Helicasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Trastornos del Neurodesarrollo , ADN Helicasas/genética , Heterocigoto , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
14.
NPJ Genom Med ; 6(1): 97, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795310

RESUMEN

Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.

15.
JAMA ; 324(7): 663-673, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32706371

RESUMEN

Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19. Design, Setting, and Participants: Case series of pairs of brothers without medical history meeting the selection criteria of young (age <35 years) brother pairs admitted to the intensive care unit (ICU) due to severe COVID-19. Four men from 2 unrelated families were admitted to the ICUs of 4 hospitals in the Netherlands between March 23 and April 12, 2020. The final date of follow-up was May 16, 2020. Available family members were included for genetic variant segregation analysis and as controls for functional experiments. Exposure: Severe COVID-19. Main Outcome and Measures: Results of rapid clinical whole-exome sequencing, performed to identify a potential monogenic cause. Subsequently, basic genetic and immunological tests were performed in primary immune cells isolated from the patients and family members to characterize any immune defects. Results: The 4 male patients had a mean age of 26 years (range, 21-32), with no history of major chronic disease. They were previously well before developing respiratory insufficiency due to severe COVID-19, requiring mechanical ventilation in the ICU. The mean duration of ventilatory support was 10 days (range, 9-11); the mean duration of ICU stay was 13 days (range, 10-16). One patient died. Rapid clinical whole-exome sequencing of the patients and segregation in available family members identified loss-of-function variants of the X-chromosomal TLR7. In members of family 1, a maternally inherited 4-nucleotide deletion was identified (c.2129_2132del; p.[Gln710Argfs*18]); the affected members of family 2 carried a missense variant (c.2383G>T; p.[Val795Phe]). In primary peripheral blood mononuclear cells from the patients, downstream type I interferon (IFN) signaling was transcriptionally downregulated, as measured by significantly decreased mRNA expression of IRF7, IFNB1, and ISG15 on stimulation with the TLR7 agonist imiquimod as compared with family members and controls. The production of IFN-γ, a type II IFN, was decreased in patients in response to stimulation with imiquimod. Conclusions and Relevance: In this case series of 4 young male patients with severe COVID-19, rare putative loss-of-function variants of X-chromosomal TLR7 were identified that were associated with impaired type I and II IFN responses. These preliminary findings provide insights into the pathogenesis of COVID-19.


Asunto(s)
COVID-19/virología , Mutación con Pérdida de Función , SARS-CoV-2/genética , Adulto , Ensayo de Inmunoadsorción Enzimática , Resultado Fatal , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Leucocitos Mononucleares , Masculino , Países Bajos , Linaje , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Adulto Joven
16.
Invest Ophthalmol Vis Sci ; 60(13): 4249-4256, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618761

RESUMEN

Purpose: To investigate the role of two deep-intronic ABCA4 variants, that showed a mild splice defect in vitro and can occur on the same allele as the low penetrant c.5603A>T, in Stargardt disease (STGD1). Methods: Ophthalmic data were assessed of 18 STGD1 patients who harbored c.769-784C>T or c.4253+43G>A in combination with a severe ABCA4 variant. Subjects carrying c.[769-784C>T; 5603A>T] were clinically compared with a STGD1 cohort previously published carrying c.5603A>T noncomplex. We calculated the penetrances of the intronic variants using ABCA4 allele frequency data of the general population and investigated the effect of c.769-784C>T on splicing in photoreceptor progenitor cells (PPCs). Results: Mostly, late-onset, foveal-sparing STGD1 was observed among subjects harboring c.769-784C>T or c.4253+43G>A (median age of onset, 54.5 and 52.0 years, respectively). However, ages of onset, phenotypes in fundo, and visual acuity courses varied widely. No significant clinical differences were observed between the c.[769-784C>T; 5603A>T] cohort and the c.4253+43G>A or the c.5603A>T cohort. The penetrances of c.769-784C>T (20.5%-39.6%) and c.4253+43G>A (35.8%-43.1%) were reduced, when not considering the effect of yet unidentified or known factors in cis, such as c.5603A>T (identified in 7/7 probands with c.769-784C>T; 1/8 probands with c.4253+43G>A). Variant c.769-784C>T resulted in a pseudo-exon insertion in 15% of the total mRNA (i.e., ∼30% of the c.769-784C>T allele alone). Conclusions: Two mild intronic ABCA4 variants could further explain missing heritability in late-onset STGD1, distinguishing it from AMD. The observed clinical variability and calculated reduced penetrance urge research into modifiers within and outside of the ABCA4 gene.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Stargardt/genética , Anciano , Alelos , Femenino , Frecuencia de los Genes , Variación Genética , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Agudeza Visual
18.
Genes (Basel) ; 9(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320387

RESUMEN

Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

19.
Ophthalmology ; 124(7): 992-1003, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412069

RESUMEN

PURPOSE: To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN: Case series. PARTICIPANTS: Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS: We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES: IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS: We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS: IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.


Asunto(s)
Coloboma/genética , ADN/genética , Proteínas del Ojo/genética , Estudios de Asociación Genética , Mácula Lútea/patología , Mutación , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Coloboma/diagnóstico , Coloboma/metabolismo , Análisis Mutacional de ADN , Electrorretinografía , Exoma , Proteínas del Ojo/metabolismo , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Tomografía de Coherencia Óptica , Agudeza Visual , Campos Visuales , Adulto Joven
20.
Invest Ophthalmol Vis Sci ; 57(14): 6180-6187, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842159

RESUMEN

PURPOSE: AGBL5, encoding ATP/GTP binding protein-like 5, was previously proposed as an autosomal recessive retinitis pigmentosa (arRP) candidate gene based on the identification of missense variants in two families. In this study, we performed next-generation sequencing to reveal additional RP cases with AGBL5 variants, including protein-truncating variants. METHODS: Whole-genome sequencing (WGS) or whole-exome sequencing (WES) was performed in three probands. Subsequent Sanger sequencing and segregation analysis were performed in the selected candidate genes. The medical history of individuals carrying AGBL5 variants was reviewed and additional ophthalmic examinations were performed, including fundus photography, fundus autofluorescence imaging, and optical coherence tomography. RESULTS: AGBL5 variants were identified in three unrelated arRP families, comprising homozygous variants in family 1 (c.1775G>A:p.(Trp592*)) and family 2 (complex allele: c.[323C>G; 2659T>C]; p.[(Pro108Arg; *887Argext*1)]), and compound heterozygous variants (c.752T>G:p.(Val251Gly) and c.1504dupG:p.(Ala502Glyfs*15)) in family 3. All affected individuals displayed typical RP phenotypes. CONCLUSIONS: Our study convincingly shows that variants in AGBL5 are associated with arRP. The identification of AGBL5 and TTLL5, a previously described RP-associated gene encoding the tubulin tyrosine ligase-like family, member 5 protein, highlights the importance of poly- and deglutamylation in retinal homeostasis. Further studies are required to investigate the underlying disease mechanism associated with AGBL5 variants.


Asunto(s)
Carboxipeptidasas/genética , ADN/genética , Mutación , Retinitis Pigmentosa/genética , Tubulina (Proteína)/metabolismo , Adolescente , Adulto , Alelos , Carboxipeptidasas/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Exoma , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...