Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(9): 2075-2087, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38345756

RESUMEN

Salicylic acid (SA) finds extensive applications in the treatment of rheumatic and skin diseases because of its analgesic, anti-inflammatory and exfoliating properties. As it is lipophilic in nature, there is a need for appropriate delivery systems to harness these properties for different applications. Herein, we examined the suitability of Pluronic P123/F127 micellar systems as delivery media by investigating the structural, flow and antimicrobial properties of P123/F127-SA solutions and hydrogels using DLS, SANS, rheological and zone inhibition measurement techniques. SA modulates the aggregation characteristics of these surfactant systems and brings about spherical-to-worm-like micelle-to-vesicular structural transitions in the hydrophobic Pluronic P123 system, a spherical-to-worm-like micellar transition in the mixed P123/F127 system and an onset of inter-micellar attraction in the hydrophilic Pluronic F127 system. SA-solubilized systems of both hydrophobic and hydrophilic Pluronics inhibit the growth of Gram-positive and Gram-negative bacteria with comparable MIC values. This suggests that the interaction of SA molecules with the bacterial cell membrane remains unobstructed upon encapsulation in Pluronic micelles. F127 hydrogel-based SA formulations with rheological properties suitable for topical applications and up to 15% SA loading were prepared. These will be useful SA ointments as F127 is an FDA-approved excipient for topical drug delivery applications. The results indicate that Pluronics remain effective as delivery agents for SA and exhibit interesting structural polymorphism upon its solubilization.


Asunto(s)
Hidrogeles , Poloxaleno , Poloxámero , Polietilenos , Polipropilenos , Poloxámero/química , Ácido Salicílico/farmacología , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Micelas
2.
Langmuir ; 39(23): 8109-8119, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37269303

RESUMEN

Tuning surface properties of nanoparticles by introducing charge, surface functionalization, or polymer grafting is central to their stability and applications. Here, we show that introducing non-DLVO forces like steric and hydrophobic effects in charged silica nanoparticle suspensions through interaction with a nonionic surfactant brings about interesting modulations in their interparticle interaction and phase behavior. The Ludox TM-40 negatively charged silica suspensions thus exhibit liquid-liquid phase separation driven by the onset of interparticle attraction in the system in the presence of the triblock copolymer Pluronic P123. The observed phase separations are thermoresponsive in nature, as they are associated with lower consolute temperatures and a re-entrant behavior as a function of temperature. The nanoparticle-Pluronic system thus undergoes transformation from one-phase to two-phase and then back to one-phase with monotonic increase in temperature. Evolution of the interparticle interaction in the composite system is investigated by dynamic light scattering (DLS), small angle neutron scattering (SANS), zeta potential, rheological, and fluorescence spectroscopy studies. Zeta potential studies show that the charge interaction in the system is partially mitigated through adsorption of a Pluronic micellar layer on the nanoparticle surfaces. Contrast-matching SANS studies suggest that hydrophobic interactions between the adsorbed micellar layer bring about the onset of interparticle attraction in the system. The results are unique and not reported hitherto in charged silica nanoparticle systems.

3.
Int J Biol Macromol ; 243: 125212, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302629

RESUMEN

In our current work we have developed a supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer with embedded hemoglobin, reconstituted via detergent-mediated method. Microscopic studies revealed that the hemoglobin molecules could be visualized without any labelling agents. The reconstituted proteins assemble themselves as supramolecular structures to adapt to lipid bilayer environment. The nonionic detergent, n-octyl-ß-d-glucoside (NOG) used for insertion of hemoglobin played an important role in formation of these structures. When concentrations of lipid, protein and detergent were raised by four folds, we observed phase separation by protein molecules within bilayer via protein-protein assembly. This phase separation process exhibited extremely slow kinetics to form large stable domains with correlation times in the order of minutes. Confocal Z-scanning images showed that these supramolecular structures generated membrane deformities. UV-Vis, Fluorescence and Circular Dichroism (CD) measurement indicated minor structural change to expose the hydrophobic regions of the protein to adjust the hydrophobic stress of the lipid environment whilst Small Angle Neutron Scattering (SANS) results indicated that the hemoglobin molecules retained their overall tetrameric form in the system. In conclusion, we state that this investigation allowed us to closely inspect some rare but noteworthy phenomena like the formation of supramolecular structures, large domain formation and membrane deformation etc.


Asunto(s)
Detergentes , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Glucósidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Hemoglobinas , Fosfatidilcolinas/química
4.
J Phys Chem B ; 125(37): 10578-10588, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34495673

RESUMEN

Lipophile induced modulations of self-assembly characteristics in aqueous Pluronic systems merit attention because of wide-ranging uses of Pluronics as solubilizing agents of lipophilic substances. In this paper, we report unusual evolutions of structural and hydration properties in lavender essential oil (LO) solubilized Pluronic P85 aqueous micellar systems as a function of micellar volume fraction and temperature. Our DLS, SANS, and viscometry studies show that the spherical-to-wormlike micellar structural transition observed in 1% P85 solutions upon solubilization of LO quite unexpectedly gets suppressed with increased P85 concentration to ≥5%. Detailed SANS studies reveal that the core sizes of the oil solubilized micelles cannot attain the threshold value required for the onset of structural transition at higher copolymer concentrations due to their progressive shrinking with an increase in P85 concentration. Oil solubilized P85 solutions show two cloud points and very interestingly exhibit micellar growth upon cooling to their lower cloud points. Steady state fluorescence studies explain this based on increasing dehydration of micellar corona with a decrease in temperature, very much opposite to what is observed in pure aqueous Pluronic systems. The results give new insight into viscous flow properties and low temperature storage possibilities of oil solubilized aqueous Pluronic systems.


Asunto(s)
Micelas , Poloxámero , Temperatura , Viscosidad , Agua
5.
Chemistry ; 27(67): 16744-16753, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468048

RESUMEN

The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.


Asunto(s)
Aminoácidos , Antiinfecciosos , Antiinfecciosos/farmacología , Materiales Biocompatibles , Humanos , Hidrogeles , Fenilalanina/análogos & derivados
6.
Phys Chem Chem Phys ; 23(27): 14818-14829, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34212952

RESUMEN

Polymer-mediated interactions such as DNA-protein binding, protein aggregation, and filler reinforcement in polymers play crucial roles in many important biological and industrial processes. In this work, we report a detailed investigation of interactions between nanoparticles in the presence of high volume fractions of an adsorbing polymer. Small-angle X-ray scattering (SAXS) revealed the existence of a stable gel-like structure in the polymer-nanoparticle dispersion, whereby anchored polymer molecules on nanoparticles acted as bridging centres, while basic interactions between nanoparticles remained repulsive. Time-resolved SAXS measurements showed that the local volume fraction of nanoparticles increased during the drying of the dispersion owing to the shrinkage of the gel-like structure. Further, nanoparticle clusters in the dehydrated composite films showed percolated networks of nanoparticles, except for 5% loading that showed a phase-separated morphology as the volume fraction of nanoparticles remained lower than the percolation threshold. A significant restructuring of nanoparticle clusters occurred upon the hydration of nanocomposite films caused by the expansion of polymer networks induced by hydration forces. Temporal evolution of the volume fraction of nanoparticles during dehydration unveiled three distinct stages similar to the logistic growth function and this was attributed to the evaporation of free, intermediate, and bound water in the different stages. A plausible mechanism was elucidated based on the spring action analogy between anchored polymer chains and nanoparticles during hydration and dehydration processes.

7.
Phys Chem Chem Phys ; 23(23): 13170-13180, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34079976

RESUMEN

The interaction of copolymer L61 i.e., (EO)2(PO)32(EO)2 (where EO and PO are ethylene and propylene oxides, respectively) with surfactant SDS (sodium dodecylsulfate) in relation to their self-aggregation, dynamics and microstructures has been physicochemically studied in detail employing the Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), Small-Angle Neutron Scattering (SANS), and Freeze-Fracture Transmission Electron Microscopy (FF-TEM) methods. The NMR self-diffusion study indicated a synergistic interaction between SDS and L61 forming L61-SDS mixed complex aggregates, and deuterium (2H) NMR pointed out the nonspherical nature of these aggregates with increasing [L61]. EPR spectral analysis of the motional parameters of 5-doxyl steraric acid (5-DSA) as a spin probe provided information on the microviscosity of the local environment of the L61-SDS complex aggregates. SANS probed the geometrical aspects of the SDS-L61 assemblies as a function of both [L61] and [SDS]. Progressive evolution of the mixed-aggregate geometries from globular to prolate ellipsoids with axial ratios ranging from 2 to 10 with increasing [L61] was found. Such morphological changes were further corroborated with the results of 2H NMR and FF-TEM measurements. The strategy of the measurements, and data analysis for a concerted conclusion have been presented.

8.
Soft Matter ; 16(41): 9525-9533, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32966529

RESUMEN

We report complex coacervation between a primarily hydrophobic protein, elastin, and a strong polyanion DNA (2 kbp) in aqueous and salty solutions at room temperature, 25 °C. The associative interaction at fixed elastin and varying DNA concentration, thereby maintaining a mixing ratio of r = [DNA] : [elastin] = 0.0027 to 0.093, was probed. What distinguishes this study from protein-DNA coacervation reported earlier is that the protein used here was mostly a hydrophobic polyampholyte with low linear charge density, and its complementary polyelectrolyte, DNA, concentration was chosen to be extremely small (1-35 ppm). The interaction profile was found to be strongly hierarchical in the mixing ratio, defined by three distinct regions: (i) Region I (r < 0.02) was defined as the onset of primary binding leading to condensation of DNA; (ii) Region II (0.02 < r < 0.08) indicated secondary binding which led to the formation of fully charge neutralized complexes signaling the onset of coacervation; and (iii) Region III (0.08 < r < 0.12) revealed growth of insoluble complexes of large size facilitating liquid-solid phase separation. The degree of complex coacervation was suppressed in the presence of a monovalent salt implying that screened Coulomb interactions governed the binding. Small angle neutron scattering data attributed an amorphous structure to the coacervates. The elastin-DNA system belongs to a rare class of interacting biopolymers where very weak electrostatic interactions may drive coacervation, thereby implying that coacervation between DNA and proteins may be ubiquitous.


Asunto(s)
ADN , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas , Electricidad Estática
9.
Mater Sci Eng C Mater Biol Appl ; 111: 110792, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279785

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) were optimally synthesized employing two energy sources viz. thermal and microwave using low temperature co-precipitation process. Both methods yielded particles with optimum physicochemical properties for biomedical applications like smaller size (~6--7 nm), narrow size distribution (standard deviation ~1.6-1.7 nm) and good magnetic parameters (saturation magnetisation ~53 emu/g at 9 T). Simplified process made use of domestic oven. After coating by amino acid serine, successful loading (>8 wt%) of drug Doxorubicin was achieved for both SPIONs. Microwave sample showed equivalently efficient drug loading despite half the serine coating. Findings were confirmed by various techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM), Vibrating sample magnetometer (VSM) and thermo gravimetric analysis (TGA) etc. Differences in thermal homogeneities and efficiency of heat transfer between two energy modes affected the properties of synthesized SPIONs. Differences were observed in amount of serine coating, drug release behaviour and in vitro experiments on A549 cells like internalisation and cell viability data. About 59 and 39% pH and time dependent drug release at pH 5 was obtained for thermal and microwave sample respectively. In vitro experiments confirmed the successful internalisation and cell death, supporting the suitability of SPIONS as efficient targeted drug carriers. Despite lesser drug release, microwave sample showed comparable in vitro results. Study emphasizes the role and importance of energy in affecting the efficiency and functional behaviour of SPIONs as nano drug carriers. Being biocompatible and magnetic these particles can be applied successfully as efficient targeted drug delivery agents.


Asunto(s)
Dextranos/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Microondas , Temperatura , Células A549 , Muerte Celular/efectos de los fármacos , Doxorrubicina/farmacología , Liberación de Fármacos , Dispersión Dinámica de Luz , Endocitosis/efectos de los fármacos , Humanos , Hidrodinámica , Nanopartículas de Magnetita/ultraestructura , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termogravimetría , Difracción de Rayos X
10.
Phys Chem Chem Phys ; 22(15): 8157-8163, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32249857

RESUMEN

This article outlines a sustainable method towards the synthesis of advanced materials such as core/shell Quantum Dots (QDs) and their in situ stabilization using microemulsions (MEs). QDs are versatile materials which show unusual optical properties. We have constructed MEs consisting of an Ionic Liquid (IL) based surfactant i.e. choline dioctylsulfosuccinate, [Cho][AOT] as an emulsifier, toluene as a nonpolar phase and water as a polar phase. The system forms a large single-phase region in the phase diagram without any co-surfactant. Spontaneous formation of micelles has been observed and studied through tensiometry and fluorescence and isothermal titration calorimetry (ITC). The exceptional swelling behaviour of the MEs was studied using Dynamic Light Scattering (DLS) and small angle neutron scattering (SANS). In ME droplets, i.e. Reverse Micelles (RMs), we successfully synthesized spherical core/shell QDs (size ∼3 to ∼6 nm) with precise control over the size and morphology. The QDs have been characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Powder X-ray Diffraction (PXRD). QDs stabilized in MEs exhibited excellent optical properties and can be suitably used as light harvesting materials for diverse applications.

11.
Carbohydr Polym ; 224: 115150, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472835

RESUMEN

Herein, the complex coacervation between in situ formed spherical fluorescent zein nanoparticles and polyanion agar as function of mixing ratio (R=[Agar]/[Zein]) was investigated. This interaction yielded two distinguishable regions (at pH 5.4): Region I (R < 0.2), where fully charge neutralized soluble complexes with protein denaturation was noticed, and Region II (R > 0.2), where overcharged complexes were formed, with R = 0.2 defining the optimum binding. Small angle neutron scattering studies demonstrated that in the low-q region, nanoparticles formed the crosslink junctions and in the persistence regime of high-q region, the data captured the cross-sectional radius ( = 3.5 nm) for agar-zein complexes. The coacervates became more viscoelastic in salt-free samples because both the low frequency storage modulus and crosslink density were found to decrease with mixing ratio. Systematic decrease in storage modulus with ionic strength (0-0.01 M) implied screened Coulomb interaction was responsible for the observed coacervation. Further, we seek to find universality in complex coacervation of zein nanoparticle with biopolymers, and polysaccharides in particular.

12.
Int J Pharm ; 563: 63-70, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30935912

RESUMEN

Polysorbate 80 is one of the most widely used solubilizing agents in food, cosmetic and pharmaceutical industries. Influences of different classes of solubilizates and additives on its self-assembly characteristics are however, not sufficiently understood yet. In this manuscript, we show how common water structure making salt NaCl, and lipophilic phytochemicals like curcumin and lavender oil help in modulating the structure of Polysorbate 80 micelles in aqueous medium. Our DLS, SANS and rheological studies show that NaCl induces sphere-to-rod growth of polysorbate 80 micelles at the room temperature. Micellar solubilizations of the phytochemicals, which were found to be facilitated with increase in temperature, induce only a marginal growth of the micelles up to the highest level of solubilization. Their presence however, helps in modulating the NaCl induced micellar growth behavior in the tween 80 solutions leading to observation of micelle-to-vesicle structural transition at 2% lavender oil concentration. The phytochemical solubilized micellar solutions could be converted to alginate based hydrogel beads and patches that can freely release micellar phytochemical in aqueous medium. Our results shed light on possible ways of modulating the solubilization behavior, self-assembly characteristics and rheological properties of aqueous system of polysorbate 80, which could be important for their applications.


Asunto(s)
Curcumina/química , Micelas , Aceites Volátiles/química , Aceites de Plantas/química , Polisorbatos/química , Cloruro de Sodio/química , Alginatos/química , Hidrogeles/química , Lavandula , Fitoquímicos/química , Reología , Solubilidad
13.
Soft Matter ; 15(11): 2348-2358, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30810157

RESUMEN

A series of water-soluble metal functionalized surfactants have been prepared using commercially available surfactant cetyl pyridinium chloride and transition metal salts. These complexes were characterized in the solid state by elemental analysis, FTIR, 1H NMR and thermogravimetric analysis. The interfacial surface activity and aggregation behaviour of the metallosurfactants were analysed through conductivity, surface tension and small angle neutron scattering measurements. Our results show that the presence of metal ions as co-ions along with counter ions favours micellization at a low critical micellization concentration (CMC). Small angle neutron scattering revealed that the metallomicelles are of a prolate ellipsoidal shape and exhibit strong counterion binding. This article further describes the interaction of the metallosurfactants with transport protein Bovine Serum Albumin (BSA) using different spectroscopic techniques. A spectroscopic study was used to study the binding, interaction and quenching mechanism of BSA with the metallosurfactants. Gel electrophoresis (SDS-PAGE) and circular dichroism (CD) investigated the structural and conformational changes produced in BSA due to the metallosurfactants. The results indicate that there is an alteration in the secondary structure of BSA due to the electrostatic interaction between positive head groups and metal co-ions of the metallosurfactants and negatively charged amino acids of BSA. As the concentration increases, the α-helicity of BSA decreases and all the three studied metallosurfactants gave comparable results. Finally, the in vitro cytotoxicity and antimicrobial activity of the metallosurfactants were evaluated against erythrocytes and microorganisms, which showed prominent effects related to the presence of a metal ion in metallomicelles of the hybrid surfactants.


Asunto(s)
Cetilpiridinio/química , Metales Pesados/química , Tensoactivos/química , Bacillus/efectos de los fármacos , Bacillus/crecimiento & desarrollo , Cetilpiridinio/farmacología , Eritrocitos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Metales Pesados/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Albúmina Sérica Bovina/química , Propiedades de Superficie , Tensoactivos/farmacología
14.
Eur Biophys J ; 48(2): 119-129, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30474716

RESUMEN

The large number of potential applications of ionic liquids (ILs) requires an understanding of their environmental impacts including their adverse effects on microorganisms living in soil and water. The molecular mechanism of toxic activities of these liquids is yet to be understood in detail. Any foreign molecules, interacting with an organism, have to encounter first the cellular membrane, which is predominantly composed of the lipid bilayer. In this work, multilamellar vesicles (MLV) of phospholipids have been used to shed light on the effect of an IL on the structure of a cellular membrane. The MLVs formed by the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are found to shrink as a consequence of interaction with an imidazolium-based IL, 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM] [BF4]). The absorbed ILs significantly modify the surface charge of the MLVs. While these observations indicate a strong membrane-IL interaction, synchrotron-based small angle X-ray diffraction (SAXD) measurements provide a structural description of the interaction. SAXD and Fourier transform infrared spectroscopy studies clearly reveal a disordering effect of the IL on the conformational organization of the lipid chains. The presence of the negatively charged lipid 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine sodium salt (DPPS) in MLVs plays an important role in disordering the chains in the membrane and inter-bilayer interactions.


Asunto(s)
Membrana Celular/química , Líquidos Iónicos/química , Membranas Artificiales , Fosfolípidos/química , Temperatura , Hidrodinámica , Imidazoles/química , Membrana Dobles de Lípidos/química , Conformación Molecular
15.
Soft Matter ; 14(31): 6463-6475, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30051132

RESUMEN

We report on the competitive phenomenon of complex coacervation versus bicontinuous gelation between pectin (P, a polyanionic carbohydrate, [P] = 0.01-2% (w/v)) and zein nanoparticles (Z, a hydrophobic protein and a weak polyampholyte, [Z] = 0.1 and 0.5% (w/v), in an ethanolic solution of effective concentration 4 and 27% (v/v)), which was studied below (pH ≈ 4), and above (pH ≈ 7.4) the pI (≈ 6.2) of zein at room temperature, 25 °C. The uniqueness of this study arises from the interaction protocol used, where the pectin used was in the extended polyelectrolyte (persistence length ≈ 10 nm) conformation while zein was used as a charged globular nanoparticle (size ≈ 80-120 nm) that was formed in situ. Their mixing ratio, r = [P] : [Z] (w/w), was varied from 0.02 to 4.0 (for [Z] = 0.5% (w/v)), and from 0.1 to 7.5 (for [Z] = 0.1% (w/v)) in the ionic strength range 10-4 to 10-2 M NaCl. Zeta potential data revealed that at pH ≈ 4, the complementary binding condition, r = 1 : 1 (equivalent to 1 : 5 molecule/nanoparticle) demarcated the coacervate from the gel region. The measured rigidity (G0, low frequency storage modulus) of these materials revealed the following: for r < 1, (low pectin content samples, coacervate region) the material had lower values of Gcoac0, whereas for r > 1, an excess of pectin facilitated gelation with Ggel0 ≫ Gcoac0. Above pI, surface patch binding caused associative interactions and complex coacervation though both biopolymers had similar net charge. The network density was used as a descriptor to distinguish between the coacervate and gel samples. Their microstructures were probed by small angle neutron scattering (SANS), and viscoelastic properties by rheology. Simple modeling shows that formation of the interpolymer complex was favored in higher protein containing samples. Mixing ratio dependent selective coacervation (a kinetic process) and bicontinuous gelation (a thermodynamic process) are rarely seen to coexist in biopolymer interactions.


Asunto(s)
Nanopartículas/química , Pectinas/química , Zeína/química , Biopolímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Concentración Osmolar , Polímeros/química
16.
Colloids Surf B Biointerfaces ; 166: 119-126, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554645

RESUMEN

The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (Dh). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes.


Asunto(s)
Ácidos y Sales Biliares/química , Micelas , Polímeros/química
17.
Ultrason Sonochem ; 42: 212-227, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29429663

RESUMEN

Nanohybrid hydrogels based on pristine graphene with enhanced toughness and dual responsive drug delivery feature is opening a new era for smart materials. Here pristine graphene hydrogels are synthesized by in situ free radical polymerization where graphene platelets are the nanobuiliding blocks to withstand external stress and shows reversible ductility. Such uniqueness is a mere reflection of rubber-like elasticity on the hydrogels. These nanobuilding blocks serve also the extensive physisorption which enhances the physical crosslinking inside the gel matrix. Besides the pH-responsive drug release features, these hydrogels are also implemented as a pulsatile drug delivery device. The electric responsive drug release behaviours are noticed and hypothesized by the formation of conducting network in the polyelectrolytic hydrogel matrix. The hydrogels are also tested as good biocompatibility and feasible cell-attachment during live-dead cell adhesion study. The drug release characteristics can also be tuned by adjusting the conducting filler loading into the gel matrix. As of our knowledge, this type of hydrogels with rubber-like consistency, high mechanical property, tunable and dual responsive drug delivery feature and very good human cell compatible is the first to report.


Asunto(s)
Portadores de Fármacos/química , Elastómeros/química , Conductividad Eléctrica , Grafito/química , Hidrogeles/química , Fenómenos Mecánicos , Agua/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Polimerizacion , Reología , Temperatura
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 191: 143-154, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028506

RESUMEN

In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (∆G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.


Asunto(s)
Clozapina/química , Ácido Desoxicólico/química , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Poloxámero/química , Dispersión Dinámica de Luz , Polvos , Dispersión del Ángulo Pequeño , Solubilidad , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
19.
Langmuir ; 34(3): 1010-1019, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29155597

RESUMEN

The effect of lavender oil on aggregation characteristics of P123 in aqueous-ethanolic solutions is investigated systematically by DLS, SANS, and rheology. The solubilization capacity of the P123 based formulations toward Lavender oil increased by increasing P123 concentration. The study unveiled the importance of the short chain alcohol-ethanol, as solubilization enhancer. The apparent hydrodynamic radius (Rh) increased significantly with an increase in lavender oil concentration up to maximum oil solubilization capacity of the copolymer at a particular ethanol concentration. DLS measurements on 5, 10, and 15 wt% P123 in the presence of 25% ethanol revealed the presence of large-sized micellar clusters in addition to the oil swollen micelles. The core size (RC), radius of hard sphere (RHS), and aggregation number (N) obtained from SANS profiles showed considerable enhancement with the addition of lavender oil confirming penetration of oil inside the copolymer. Rheological studies showed that viscosity also increased significantly with the addition of lavender oil near the maximum loading limit of the P123 concentration. Quite interestingly, the sol-gel transition temperature displayed a strong dependence on both P123 as well as oil concentration and decreased almost linearly by increasing oil concentration. This study demonstrates the use of a biocompatible and temperature sensitive self-assembled P123 based formulation for lavender oil solubilization that can be beneficial in the cosmetic industry wherein controlled release of fragrances and so forth is demanded.

20.
Phys Chem Chem Phys ; 19(47): 31747-31755, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29167857

RESUMEN

Subtle changes in the microstructure and dynamics of the triblock copolymer L121, (ethylene oxide)5 (propylene oxide)68 (ethylene oxide)5i.e., E5P68E5, and sodium dodecylsulfate (SDS) system in aqueous medium were investigated using high-resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and small-angle neutron scattering (SANS) methods. NMR self-diffusion measurements helped us to understand the nature of binding of SDS with L121, and the formation of their mixed aggregates. These results showed that even at low [SDS] (∼2 mM), the addition of L121 stabilized the dynamics of SDS. Furthermore, the increase in [SDS] resulted in progressive changes in the diffusion behavior of both SDS and L121. 13C chemical shift analysis revealed that preferential binding of L121 occurred on the SDS micelle surface. Deuterium (2H) NMR spin-relaxation data evidenced that the formed mixed aggregates were non-spherical in terms of relaxation rate changes, and slowed the dynamics. The rotational correlation times of mixed aggregates were estimated from EPR analysis. A SANS study indicated the presence of uni- and multi-lamellar vesicles of L121 at low [SDS]. The vesicles transformed to mixed L121-SDS micelles in the presence of a higher [SDS]. This was supported by the measurements of 2H NMR spin-relaxation and EPR rotational correlation times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...