Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397787

RESUMEN

Healing in compromised and complicated bone defects is often prolonged and delayed due to the lack of bioactivity of the fixation device, secondary infections, and associated oxidative stress. Here, we propose amorphous silicon oxynitride (SiONx) as a coating for the fixation devices to improve both bioactivity and bacteriostatic activity and reduce oxidative stress. We aimed to study the effect of increasing the N/O ratio in the SiONx to fine-tune the cellular activity and the antioxidant effect via the NRF2 pathway under oxidative stress conditions. The in vitro studies involved using human mesenchymal stem cells (MSCs) to examine the effect of SiONx coatings on osteogenesis with and without toxic oxidative stress. Additionally, bacterial growth on SiONx surfaces was studied using methicillin-resistant Staphylococcus aureus (MRSA) colonies. NRF2 siRNA transfection was performed on the hMSCs (NRF2-KD) to study the antioxidant response to silicon ions. The SiONx implant surfaces showed a >4-fold decrease in bacterial growth vs. bare titanium as a control. Increasing the N/O ratio in the SiONx implants increased the alkaline phosphatase activity >1.5 times, and the other osteogenic markers (osteocalcin, RUNX2, and Osterix) were increased >2-fold under normal conditions. Increasing the N/O ratio in SiONx enhanced the protective effects and improved cell viability against toxic oxidative stress conditions. There was a significant increase in osteocalcin activity compared to the uncoated group, along with increased antioxidant activity under oxidative stress conditions. In NRF2-KD cells, there was a stunted effect on the upregulation of antioxidant markers by silicon ions, indicating a role for NRF2. In conclusion, the SiONx coatings studied here displayed bacteriostatic properties. These materials promoted osteogenic markers under toxic oxidative stress conditions while also enhancing antioxidant NRF2 activity. These results indicate the potential of SiONx coatings to induce in vivo bone regeneration in a challenging oxidative stress environment.

2.
Front Aging ; 4: 1217054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520216

RESUMEN

In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.

3.
Surf Interfaces ; 282022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005303

RESUMEN

Titanium (Ti) surface modification via coating technologies (plasma spraying, electron-beam deposition) has been used to enhance bone-implant bonding by increasing the rate of hydroxyapatite (HA) formation, a property known as bioactivity. Regardless the enhancement in the surface activity, the high fabrication-temperature (> 600 °C) reduces coating-implant adhesion due to thermal expansion mismatch and reduces bioactivity due to increased crystallinity in the coating. Thus, amorphous surface coatings with strong Ti-substrate adhesion that can be fabricated at relatively low temperatures are crucially needed for enhanced osseointegration. Therefore, this study aimed to enhance the Ti surface bioactivity via strongly adherent bioactive thin film coatings deposited by low temperature (< 400 °C) plasma enhanced chemical vapor deposition technique on nanopore anodized-Ti (A-Ti) surface. Two groups of coating (silicon oxynitride (SiON) and silicon oxynitrophosphide (SiONP)) were deposited on anodized Ti and tested for interfacial adhesion and surface bioactivity. TEM and XPS were used to investigate the interfacial composition while interfacial adhesion was tested using nano-indentation tests which indicated a strong interfacial adhesion between the coatings and the A-Ti substrate. Surface bioactivity of the modified Ti was tested by comprehensive surface characterization (i.e., chemical composition, surface energy, morphology, and mechanical properties) and apatite formation on each surface. SiONP coating significantly enhanced the Ti surface bioactivity that presented the highest surface coverage of carbonated hydroxyapatite (HCA, ~ 40%) with a Ca/P ratio (~ 1.65) close to the stoichiometric hydroxyapatite (~ 1.67) found in bone biomineral. The HCA structure and morphology were confirmed by HR-TEM/SAED, XRD, FT-IR, and HR-SEM/EDX. MSCs in-vitro studies indicated preferable cells adhesion and proliferation on the modified surfaces without any cytotoxic effects. This study concluded that the improved surface bioactivity of Ti-SiON and Ti-SiONP coatings suggests their potential use as strongly adherent bioactive surface coatings for Ti implants.

4.
JBMR Plus ; 5(4): e10425, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869985

RESUMEN

Critical-sized bone defects are challenging to heal because of the sudden and large volume of lost bone. Fixative plates are often used to stabilize defects, yet oxidative stress and delayed angiogenesis are contributing factors to poor biocompatibility and delayed bone healing. This study tests the angiogenic and antioxidant properties of amorphous silicon oxynitrophosphide (SiONPx) nanoscale-coating material on endothelial cells to regenerate vascular tissue in vitro and in bone defects. in vitro studies evaluate the effect of silicon oxynitride (SiONx) and two different SiONPx compositions on human endothelial cells exposed to ROS (eg, hydrogen peroxide) that simulates oxidative stress conditions. in vivo studies using adult male Sprague Dawley rats (approximately 450 g) were performed to compare a bare plate, a SiONPx-coated implant plate, and a sham control group using a rat standard-sized calvarial defect. Results from this study showed that plates coated with SiONPx significantly reduced cell death, and enhanced vascular tubule formation and matrix deposition by upregulating angiogenic and antioxidant expression (eg, vascular endothelial growth factor A, angiopoetin-1, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2, and catalase 1). Moreover, endothelial cell markers (CD31) showed a significant tubular structure in the SiONPx coating group compared with an empty and uncoated plate group. This reveals that atomic doping of phosphate into the nanoscale coating of SiONx produced markedly elevated levels of antioxidant and angiogenic markers that enhance vascular tissue regeneration. This study found that SiONPx or SiONx nanoscale-coated materials enhance antioxidant expression, angiogenic marker expression, and reduce ROS levels needed for accelerating vascular tissue regeneration. These results further suggest that SiONPx nanoscale coating could be a promising candidate for titanium plate for rapid and enhanced cranial bone-defect healing. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

5.
Langmuir ; 37(5): 1743-1759, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33502870

RESUMEN

This work reports on the development of borate- and methacrylate-polymer-coated zinc oxide nanoparticles (ZnOBM) via a plasma polymerization technique to replace the harmful conventional antiwear additive zinc dialkyl dithiophosphate (ZDDP) in automotive lubricants. Here, the tribochemistry across the interfaces formed between sliding ferrous surfaces and coated and uncoated ZnO nanoparticles is thoroughly studied from the perspective of elucidating the tribofilm formation, wear, and friction performance of a novel ZnOBM-based nanolubricant. Tribological tests conducted under a boundary lubrication regime revealed that oil formulations containing only ZnOBM nanoadditives and a mixture of ZnOBM with a low amount of ZDDP (350 ppm of P) significantly improve wear performance (up to 95%) compared to the base oil. Electrical contact resistance results acquired in situ during tribological tests demonstrated that lubricants containing ZnOBM nanoparticles at sliding interfaces undergo tribochemical reactions to form stable tribofilms that reduce friction and wear. Atomic force microscopy (AFM), X-ray absorption near-edge spectroscopy (XANES), and X-ray photoelectron spectroscopy (XPS) analysis revealed that ZnOBM nanoparticles, by themselves, form patchy interfacial tribofilms containing iron borate, boron oxide, and zinc oxide and lead to superior tribological performance. Interestingly, ZnOBM nanoparticles interact synergistically with ZDDP to form a hierarchical interface of boron-doped tribofilms, with zinc-iron polyphosphates at the surface and iron oxide, zinc and iron sulfides in the bulk. These encouraging results suggest the potential effective use of the ZnOBM nanoparticles to significantly reduce harmful levels of ZDDP (350 ppm) in the engine oil without compromising the antifriction and antiwear performance and to develop eco-friendly high-performance lubricant additives.

6.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419056

RESUMEN

Volumetric muscle loss injuries overwhelm the endogenous regenerative capacity of skeletal muscle, and the associated oxidative damage can delay regeneration and prolong recovery. This study aimed to investigate the effect of silicon-ions on C2C12 skeletal muscle cells under normal and excessive oxidative stress conditions to gain insights into its role on myogenesis during the early stages of muscle regeneration. In vitro studies indicated that 0.1 mM Si-ions into cell culture media significantly increased cell viability, proliferation, migration, and myotube formation compared to control. Additionally, MyoG, MyoD, Neurturin, and GABA expression were significantly increased with addition of 0.1, 0.5, and 1.0 mM of Si-ion for 1 and 5 days of C2C12 myoblast differentiation. Furthermore, 0.1-2.0 mM Si-ions attenuated the toxic effects of H2O2 within 24 h resulting in increased cell viability and differentiation. Addition of 1.0 mM of Si-ions significantly aid cell recovery and protected from the toxic effect of 0.4 mM H2O2 on cell migration. These results suggest that ionic silicon may have a potential effect in unfavorable situations where reactive oxygen species is predominant affecting cell viability, proliferation, migration, and differentiation. Furthermore, this study provides a guide for designing Si-containing biomaterials with desirable Si-ion release for skeletal muscle regeneration.


Asunto(s)
Músculo Esquelético/fisiología , Mioblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración/efectos de los fármacos , Silicio/farmacología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Iones/química , Iones/farmacología , Ratones , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/metabolismo , Mioblastos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Regeneración/genética
7.
Med Devices Sens ; 4(1)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35765350

RESUMEN

The current study provides more insights about the surface bioactivity of the silicon nitride (Si3N4) as a potential candidate for bone regeneration in craniofacial and orthopaedic applications compared with conventional implantation materials. Current skeletal reconstructive materials such as titanium and polyether ether ketone (PEEK) are limited by poor long-term stability, biocompatibility and prolonged healing. Si3N4 is an FDA-approved material for an intervertebral spacer in spinal fusion applications. It is biocompatible and has antimicrobial properties. Here, we hypothesize that Si3N4 was found to be an osteoconductive material and conducts the growth, differentiation of MC3T3-E1 cells for extracellular matrix deposition, mineralization and eventual bone regeneration for craniofacial and orthopaedic applications. MC3T3-E1 cells were used to study the osteoblastic differentiation and mineralization on sterile samples of Si3N4, titanium alloy and PEEK. The samples were then analysed for extracellular matrix deposition and mineralization by FTIR, Raman spectroscopy, SEM, EDX, Alizarin Red, qRT-PCR and ELISA. The in vitro study indicates the formation of collagen fibres and mineral deposition on all three sample surfaces. There was more profound and faster ECM deposition and mineralization on Si3N4 surface as compared to titanium and PEEK. The FTIR and Raman spectroscopy show formation of collagen and mineral deposition at 30 days for Si3N4 and titanium and not PEEK. The peaks shown by Raman for Si3N4 resemble closely to natural bone. Results also indicate the upregulation of osteogenic transcription factors such as RUNX2, SP7, collagen type I and osteocalcin. The authors concluded that Si3N4 rapidly conducts mineralized tissue formation via extracellular matrix deposition and biomarker expression in mouse calvarial pre-osteoblast cells. Thus, this study confirms that the bioactive Si3N4 could be a potential material for craniofacial and orthopaedic applications leading to rapid bone regeneration that resemble the natural bone structure.

8.
J Mater Res ; 36(19): 3936-3951, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34992330

RESUMEN

Hepatocyte growth factor (HGF) is a novel potential therapy for improving bone health in patients with type II diabetes and hypertension, but its effect on the bone molecular structure is not revealed yet. Here, X-ray absorption near edge structure (XANES) spectroscopy was used to explore the effects elicited by HGF on the bone chemical structure. This study assessed local calcium (Ca) and phosphorus (P) coordination of diabetic hypertensive rat bones, each with and without HGF treatment. Results revealed that HGF has significant effects on Ca and P coordination chemistry as confirmed by presence of more soluble phosphates in the HGT-treated groups. Data indicated that treated bones have a poorly developed phosphate structure as evidenced by drastic drop in post-edge shoulder in P L2,3-edge compared to diabetic hypertensive and diabetic control bone. Presence of soluble Ca and P, products of bone resorption, with HGF treatment suggests unbalanced bone resorption and formation.

9.
J Mater Res ; 35(1): 58-75, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35844898

RESUMEN

This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14-15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca─P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.

10.
Tissue Eng Part A ; 26(1-2): 15-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044666

RESUMEN

Lack of osteointegration is a major cause of aseptic loosening and failure of implants used in bone replacement. Implants coated with angiogenic biomaterials can improve osteointegration and potentially reduce these complications. Silicon- and phosphorus-based materials have been shown to upregulate expression of angiogenic factors and improve endothelial cell functions. In the present study, we hypothesize that implants coated with amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP) by using plasma-enhanced chemical vapor deposition (PECVD) technique could enhance human umbilical vein endothelial cell angiogenic properties in vitro. The tested groups were: glass coverslip (GCS), tissue culture plate, SiON, SiONP1 (O: 7.3 at %), and SiONP2 (O: 14.2 at %) implants. The SiONP2 composition demonstrated 3.5-fold more fibronectin deposition than the GCS (p < 0.001). The SiONP2 group also presented a significant improvement in the capillary tubule length and thickness compared with the other groups (p < 0.01). At 24 h, we observed at least a twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2, more evident in the SiONP1 and SiONP2 groups. In conclusion, the studied amorphous silica-coated implants, especially the SiONP2 composition, could enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing. Impact Statement In this study, we report for the first time the significant enhancement of human umbilical vein endothelial cell angiogenic properties (in vitro) by the amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP). The SiONP2 demonstrated 3.5-fold more fibronectin deposition than the glass coverslip and presented a significant improvement in the capillary tubule length and thickness. At 24 h, SiONP reported twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2. The studied amorphous silica-coated implants enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Dióxido de Silicio/química , Angiopoyetina 1/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Biomed Nanotechnol ; 15(6): 1241-1255, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31072432

RESUMEN

Fracture healing is a complex biological process. Severe bone loss and ischemia from traumatic fractures lead to inflammation and accumulation of damaging reactive oxygen species (ROS). Fixative devices that not only provide mechanical support but also stimulate antioxidants such as superoxide dismutase (SOD1) and influence signaling pathways for extracellular matrix (ECM) mineralization, are critical for normal healing of such fractures. In this study, we report a novel biomaterial, silicon oxynitrophosphide (SiONP) that provides sustained release of ionic silicon (Si+4) and phosphorous (P) over few weeks under physiological conditions. Anti-oxidant role of Si+4 and augmented ECM mineralization by P ions lead to enhanced osteogenesis coupled with quick revascularization for rapid bone regeneration. Plasma enhanced chemical vapor deposition (PECVD) provided a conformal, well adherent and highly reproducible surface chemistry overlaid onto nanofabricated bioinspired surfaces. The Nitrogen to P and O content ratio was observed to change the dissolution rate and the release kinetics of the overlaid film. The SiONP films with optimal release kinetics promoted anti-oxidant expression via enhanced SOD1, which downstream upregulated other osteogenic markers with MC3T3-E1 cells. These surfaces also promoted angiogenesis evident by formation of thicker tubules by Human umbilical vein endothelial cells (HUVEC). In-vivo evaluation using a rat critical-sized calvarial defect model showed rapid bone-regeneration for these nanofabricated biomaterials as compared to control groups, and opens new horizon for future clinical trials of new antioxidant materials on biomedical devices that can reduce healing time, lower medical care cost, and increase the quality of newly formed bone in critical size defects.


Asunto(s)
Osteogénesis , Animales , Materiales Biocompatibles , Regeneración Ósea , Huesos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Porosidad , Ratas , Silicio
12.
Med Devices Sens ; 2(2)2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35781939

RESUMEN

The bioactive silicon nitride (Si3N4) has been FDA cleared for use as spinal intervertebral arthrodesis devices. Because its surface properties promote bone ongrowth and ingrowth, it also has the potential to benefit craniofacial reconstruction. Thus, the aim of this work was to determine whether the surface properties of Si3N4 could enhance the osteoblast cell growth, differentiation and nucleation of hydroxyapatite (HA) crystals compared to conventional implant materials such as titanium (Ti) and polyether ether ketone (PEEK). X-ray absorbance near-edge structure analysis (XANES) indicated the presence of Si-Si, Si-O and Si-N bonding. Surface wettability studies confirmed that Si3N4 exhibits the lowest contact angle and highest surface energy. Cell culture studies showed that osteoblast growth was enhanced on Si3N4 after 1 day and up to 7 days. Si3N4 surface induced highest surface coverage and thickness of nanocrystalline HA (211) and (203) in cell-free in vitro studies after 7 days of culture. Raman spectroscopy analysis confirmed the presence of surface functional groups consisting of phosphate and carbonate species. Interestingly, Si3N4 surface showed amide and hydroxyproline groups, the precursors to collagen, which were not observed on Ti and PEEK surfaces. Furthermore, Si3N4 surface indicated high expression of RUNX2, enhanced cell differentiation and dense collagenous ECM after 30 days of the in vitro study. The present study concluded that Si3N4 surface enhances osteoprogenitor cell adhesion, growth, RUNX2 expression and ECM formation via the coupled effects of higher surface energy and the presence of amide and nanocrystalline HA functional groups.

13.
J Biomed Mater Res B Appl Biomater ; 107(4): 1284-1294, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30318728

RESUMEN

Bioactive coatings are usually applied to bone and dental prostheses to enhance the integration and their stability in the bone. Recently, silicon (Si) oxynitride ceramics have been demonstrated to possess osteoconductive properties due to the release of Si ions, particularly important in the early stage of bone formation. In addition, the pattern of the bone contacting surface has been reported to affect cells' differentiation and metabolic activity. In this work, we propose the Breath Figure (BF) process combined with a pyrolysis step, starting from a photo-crosslinkable alkoxy silicone precursor, as a method to realize bioactive patterned coating on metal bone and dental prostheses. Four different surface patterned coatings were applied to Ti4Al6V disks starting from solutions with different precursor concentrations. Morphology, chemical composition, and Si ions' release were evaluated and compared. Moreover, all samples underwent to biological in vitro testing with human mesenchymal stem cells (hMSCs) in comparison with the uncoated titanium alloy. The results indicated that the Si released from the coatings determined an increase in the cellular activity with the BF pattern influencing the hMSCs' initial adhesion and proliferation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1284-1294, 2019.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Cerámica , Materiales Biocompatibles Revestidos , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Compuestos de Silicona , Cerámica/química , Cerámica/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Compuestos de Silicona/química , Compuestos de Silicona/farmacología , Propiedades de Superficie
14.
J Tissue Eng Regen Med ; 12(11): 2203-2220, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30062712

RESUMEN

Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.


Asunto(s)
Materiales Biocompatibles , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Peróxido de Hidrógeno/efectos adversos , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/biosíntesis , Silicatos , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Mitocondriales , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintasa/biosíntesis , Silicatos/química , Silicatos/farmacología , Silicio/química , Silicio/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis
15.
J Tissue Eng Regen Med ; 12(2): e1131-e1142, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28500666

RESUMEN

In this study, bioactive hydroxyapatite (HAP)-based bioceramics starting from cuttlefish bone powders have been prepared and characterized. In particular, fragmented cuttlefish bone was co-sintered with 30 wt% of Bioglass® -45S5 to synthesize HAP-based powders with enhanced mechanical properties and bioactivity. Commercial synthetic HAP was treated following the same procedure and used as a reference. The structure and composition of the bioceramics formulations were characterized using Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. After the thermal treatment of cuttlefish bone powder added with 30 wt% Bioglass, new phases with compositions of sodium calcium phosphate [Na3 Ca6 (PO4 )5 ], ß-tricalcium phosphate [Ca3 (PO4 )] and amorphous silica were detected. In vitro cell culture studies were performed by evaluating proliferation, metabolic activity and differentiation of human osteoblast-like cells (MG63). Scaffolds made with cuttlefish bone powder exhibited increased apatite deposition, alkaline phosphatase activity and cell proliferation compared with commercial synthetic HAP. In addition, the ceramic compositions obtained after the combination with Bioglass® further enhanced the metabolic activity of MG63 cell and promoted the formation of a well-developed apatite layer after 7 days of incubation in Dulbecco's modified Eagle's medium.


Asunto(s)
Materiales Biocompatibles/farmacología , Huesos/fisiología , Calcificación Fisiológica/efectos de los fármacos , Cerámica/farmacología , Decapodiformes/fisiología , Durapatita/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Huesos/efectos de los fármacos , Huesos/ultraestructura , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , ADN/metabolismo , Humanos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
16.
J Phys Chem B ; 121(38): 8991-9005, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28825836

RESUMEN

Silicon oxynitride (Si-O-N) is a new biomaterial in which its O/N ratio is tunable for variable Si release and its subsequent endocytotic incorporation into native hydroxyapatite for enhanced bone healing. However, the effect of nitrogen and hydrogen bonding on the formation and structure of hydroxyapatite is unclear. This study aims to uncover the roles of H and N in tuning Si-O-N surface bioactivity for hydroxyapatite formation. Conformal Si-O-N films were fabricated by plasma-enhanced chemical vapor deposition (PECVD) onto Ti/Si substrates. Fourier transform infrared spectroscopy (FTIR) and Rutherford backscattering spectrometry (RBS) analysis indicated increased Si-H and N-H bonding with increased N content. Surface energy decreased with increased N content. X-ray absorbance near edge structure (XANES) analysis showed tetrahedral coordination in O-rich films and trigonal coordination in N-rich films. O-rich films exhibited a 1:1 ratio of 2p3/2 to 2p1/2 electron absorbance, while this ratio was 1.73:1 for N-rich films. Both Si and N had a reduced partial charge for both O- and N-rich films, whereas O maintained its partial charge for either film. O-rich films were found to exhibit random bonding SizOxNy, while N-rich films exhibited random mixing: [Si-Si]-[Si-O]-[Si-N]. Thus, hydrogen bonding limits random nitrogen bonding in Si-O-N films via surface Si-H and N-H bonding. Moreover, increased nitrogen content reduces the partial charge of constituent elements and changes the bonding structure from random bonding to random mixing.


Asunto(s)
Materiales Biocompatibles/química , Hidrógeno/química , Nitrógeno/química , Durapatita/química , Enlace de Hidrógeno , Ensayo de Materiales , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
17.
ACS Appl Mater Interfaces ; 9(30): 25631-25641, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28657292

RESUMEN

Plasma-functionalized polytetrafluoroethylene (PTFE) nanoparticles were employed to evaluate their utility in improving the lubrication property of a group III mineral oil with a significantly low amount of zinc dialkyl dithiophosphate (ZDDP). The particles were coated with two consecutive films; the initial coating contained silica to enhance amorphous glassy tribofilm formation, followed by a methacrylate film to protect the silica coating and enhance dispersibility in the oil. The functionalized nanoparticles were evaluated for their tribological performance using a high-frequency reciprocating rig, in a cylinder-on-flat configuration. The oil formulations containing ZDDP (350 ppm phosphorus level) and the functionalized nanoparticles resulted in dramatic reductions in the friction coefficient and overall wear compared to the samples containing nonfunctionalized PTFE nanoparticles, ZDDP (350 ppm P), and samples devoid of nanoparticles but containing ZDDP with a 700 ppm P treat rate. XPS and XANES spectroscopy were employed to characterize the tribological films formed on the test samples. The samples with functionalized particles and ZDDP clearly exhibited tribofilms with Si- and F-doped polyphosphates of Zn coupled with the presence of ZnS at the metal-tribofilm interface. On the other hand, oils without the functionalized nanoparticles have oxides of Fe and to a lesser extent short-chain phosphates of Zn. The overall results suggest that the synergism between plasma-coated PTFE nanoparticles and ZDDP contributed to the development of protective tribofilms even at reduced amount of phosphorus in the oil. This new method of employing nanoparticles to deliver novel antifriction and antiwear chemistries at the tribological interfaces stands out as a promising approach to further reduce P levels in oils without compromising friction and wear performance.

18.
J Orthop Res ; 35(7): 1453-1460, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27564450

RESUMEN

Bone morphogenetic protein (BMP)-2 and ibandronate (IB) decrease the femoral head deformity following ischemic osteonecrosis of the femoral head (ONFH). The purpose of this study was to determine the effects of BMP-2 and IB on the mineral content and nanoindentation properties of the bone following ONFH. ONFH was surgically induced in the femoral head of piglets. There were five groups: normal control, untreated, IB, BMP, and BMP + IB (n = 5/group). Backscattered electron imaging, Raman spectroscopy, and nanoindentation testing were performed. Both BMP and BMP + IB groups showed calcium content in the trabecular bone similar to the normal group, while the IB and no-treatment groups showed a significant increase in the calcium content compared to the normal group. The carbonate content relative to phosphate was significantly increased in the IB and BMP + IB groups (p < 0.01) compared to the normal group. No significant difference was found between the BMP and the normal group. The nanoindentation modulus of the bone in the IB group was significantly increased compared to the normal group (p < 0.05). No significant differences were observed between the BMP and BMP + IB groups compared to the normal group. The nanoindentation hardness measurements in the IB group were also significantly increased compared to the BMP and BMP + IB groups (p < 0.05). In summary, trabecular bone treated with BMP or BMP + IB had material properties comparable to normal bone whereas the bone in the IB group retained the increased mineral content and the nanoindentation hardness found in the necrotic bone. Hence, BMP or BMP + IB better restores the normal mineral content and nanomechanical properties after ONFH than IB treatment alone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1453-1460, 2017.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Proteína Morfogenética Ósea 2/uso terapéutico , Difosfonatos/uso terapéutico , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Cabeza Femoral/efectos de los fármacos , Animales , Conservadores de la Densidad Ósea/farmacología , Proteína Morfogenética Ósea 2/farmacología , Difosfonatos/farmacología , Evaluación Preclínica de Medicamentos , Ácido Ibandrónico , Masculino , Porcinos
19.
Adv Healthc Mater ; 5(17): 2199-213, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27385056

RESUMEN

Traumatic fractures cause structurally unstable sites due to severe bone loss. Such fractures generate a high yield of reactive oxygen species (ROS) that can lead to oxidative stress. Excessive and prolonged ROS activity impedes osteoblast differentiation and instigates long healing times. Stimulation of antioxidants such as superoxide dismutase (SOD1), are crucial to reduce ROS, stimulate osteogenesis, and strengthen collagen and mineral formation. Yet, no current fixative devices have shown an ability to enhance collagen matrix formation through antioxidant expression. This study reports plasma-enhanced chemical vapor deposition based amorphous silicon oxynitride (Si(ON)x) as a potential new fracture healing biomaterial that adheres well to the implant surface, releases Si(+4) to enhance osteogenesis, and forms a surface hydroxyapatite for collagen mineral attachment. These materials provide a sustained release of Si(+4) in physiological environment for extended times. The dissolution rate partially depends on the film chemistry and can be controlled by varying O/N ratio. The presence of Si(+4) enhances SOD1, which stimulates other osteogenic markers downstream and leads to rapid mineral formation. In vivo testing using a rat critical-sized calvarial defect model shows a more rapid bone-regeneration for these biomaterials as compared to control groups, that implies the clinical significance of the presented biomaterial.


Asunto(s)
Curación de Fractura , Fracturas Óseas/terapia , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio , Animales , Línea Celular , Fracturas Óseas/metabolismo , Fracturas Óseas/patología , Masculino , Ratones , Ratas , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Superóxido Dismutasa-1/metabolismo
20.
Bone ; 81: 602-613, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303287

RESUMEN

Human DMP1 mutations or Dmp1-null (KO) mice display hypophosphatemia rickets, suggesting a causative role of low phosphate (P) in development of osteomalacia. To address the direct contribution of P to the in vivo bone mineralization we analyzed the properties of femurs obtained from Dmp1 null mice and wild type (WT) mice under a normal or high phosphorous (HiP) diet using combined assays, including histological examination, micro computed tomography (µCT), X-ray absorption near edge structure (XANES) spectroscopy and Raman spectroscopy. Histology and XANES indicate that WT mice have phosphate coordinated with Ca in the form of hydroxyapatite and tricalcium phosphate, while the KO mice have poorly coordinated soluble phosphates in their structure in both the normal and HiP diets. Raman spectroscopy and XANES indicate a higher carbonate/phosphate ratio and a low mineral/matrix ratio in the osteoid clusters in the KO femurs, which was only partially improved by HiP diets. Thus, we conclude that the hypophosphatemia induced osteomalacia phenotype in Dmp1 KO mice is contributed by at least two factors: the low Pi level and the DMP1 local function in mineralization.


Asunto(s)
Densidad Ósea/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Fosfatos/sangre , Animales , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Femenino , Fémur/metabolismo , Fémur/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Osteomalacia/etiología , Osteomalacia/metabolismo , Osteomalacia/patología , Fosfatos/administración & dosificación , Raquitismo Hipofosfatémico/complicaciones , Raquitismo Hipofosfatémico/metabolismo , Raquitismo Hipofosfatémico/patología , Espectrometría Raman , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...