Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Brain Stimul ; 17(3): 510-524, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677543

RESUMEN

BACKGROUND: Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies. METHODS: Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories. RESULTS: The right and left cervical VN (cVN) contained a total of 25,489 ± 2781 and 23,286 ± 3164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5 % versus 72.4 ± 5.6 %), while 13.2 ± 1.8 % versus 13.3 ± 3.0 % were special visceromotor and parasympathetic, and 13 ± 5.9 % versus 14.3 ± 4.0 % were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4 % versus 19.8 ± 13.3 %), and 50 % of the left branch contained sensory and sympathetic fibers only. CONCLUSION: The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.

2.
Sci Adv ; 10(9): eadj3872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416828

RESUMEN

Advances in robotics have outpaced the capabilities of man-machine interfaces to decipher and transfer neural information to and from prosthetic devices. We emulated clinical scenarios where high- (facial) or low-neural capacity (ulnar) donor nerves were surgically rewired to the sternomastoid muscle, which is controlled by a very small number of motor axons. Using retrograde tracing and electrophysiological assessments, we observed a nearly 15-fold functional hyper-reinnervation of the muscle after high-capacity nerve transfer, demonstrating its capability of generating a multifold of neuromuscular junctions. Moreover, the surgically redirected axons influenced the muscle's physiological characteristics, by altering the expression of myosin heavy-chain types in alignment with the donor nerve. These findings highlight the remarkable capacity of skeletal muscles to act as biological amplifiers of neural information from the spinal cord for governing bionic prostheses, with the potential of expressing high-dimensional neural function for high-information transfer interfaces.


Asunto(s)
Neuronas Motoras , Regeneración Nerviosa , Humanos , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Músculo Esquelético , Nervios Periféricos , Axones/fisiología
3.
J Hand Surg Eur Vol ; : 17531934241227795, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366374

RESUMEN

Selective nerve transfers are used in the setting of upper limb amputation to improve myoelectric prosthesis control. This surgical concept is referred to as targeted muscle reinnervation (TMR) and describes the rerouting of the major nerves of the arm onto the motor branches of the residual limb musculature. Aside from providing additional myosignals for prosthetic control, TMR can treat and prevent neuroma pain and possibly also phantom limb pain. This article reviews the history and current applications of TMR in upper limb amputation, with a focus on practical considerations. It further explores and identifies technological innovations to improve the man-machine interface in amputation care, particularly regarding implantable interfaces, such as muscle electrodes and osseointegration. Finally, future clinical directions and possible scientific avenues in this field are presented and critically discussed.

6.
Arch Clin Cases ; 10(4): 200-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155995

RESUMEN

Paget-Schroetter syndrome (PSS) is relatively rare condition of thoracic outlet syndrome characterized by thrombosis or blood clot formation in the subclavian vein. Due to the non-specific symptoms and low incidence rate, PSS is frequently missed by medical professionals, and as such it often leads to wrong diagnosis and untreated patients. We present the case of a 30-year-old CrossFit trainer who developed a thrombosis of the subclavian vein. Initially, the patient consulted an internist after experiencing swelling in the right shoulder region and discoloration of the right upper extremity. Angiography revealed occlusion of the subclavian vein and anticoagulant therapy was prescribed. For more than a year, the patient's symptoms remained unchanged, and the subclavian vein occlusion persisted. Venography suspected effort thrombosis of the subclavian vein. The patient underwent surgery for decompression of the subclavian vein. After six months, results from post-operative computed tomography angiography showed that venous flow was fully restored and no pathology of the venous vessel wall could be demonstrated. This report aims to increase awareness of PSS among medical professionals, leading to earlier diagnosis and adequate clinical-surgical management.

7.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941253

RESUMEN

Small obstacles on the ground often lead to a fall when caught with commercial prosthetic feet. Despite some recently developed feet can actively control the ankle angle, for instance over slopes, their flat and rigid sole remains a cause of instability on uneven grounds. Soft robotic feet were recently proposed to tackle that issue; however, they lack consistent experimental validation. Therefore, this paper describes the experimental setup realized to test soft and rigid prosthetic feet with lower-limb prosthetic users. It includes a wooden walkway and differently shaped obstacles. It was preliminary validated with an able-bodied subject, the same subject walking on commercial prostheses through modified walking boots, and with a prosthetic user. They performed walking firstly on even ground, and secondly on even ground stepping on one of the obstacles. Results in terms of vertical ground reaction force and knee moments in both the sagittal and frontal planes show how the poor performance of commonly used prostheses is exacerbated in case of obstacles. The prosthetic user, indeed, noticeably relies on the sound leg to compensate for the stiff and unstable interaction of the prosthetic limb with the obstacle. Therefore, since the limitations of non-adaptive prosthetic feet in obstacle-dealing emerge from the experiments, as expected, this study justifies the use of the setup for investigating the performance of soft feet on uneven grounds and obstacle negotiation.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Marcha , Fenómenos Biomecánicos , Pie , Caminata , Diseño de Prótesis
8.
Front Neuroanat ; 17: 1198042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332322

RESUMEN

Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems.

9.
J Pers Med ; 13(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109045

RESUMEN

Negative expectations regarding nerve reconstruction in the elderly prevail in the literature, but little is known about the effectiveness of nerve transfers in patients with brachial plexus injuries aged over 60 years. We present a series of five patients (1 female, 4 male) aged between 60 and 81 years (median 62.0 years) who underwent nerve reconstruction using multiple nerve transfers in brachial plexopathies. The etiology of brachial plexus injury was trauma (n = 2), or iatrogenic, secondary to spinal surgical laminectomy, tumor excision and radiation for breast cancer (n = 3). All but one patient underwent a one-stage reconstruction including neurolysis and extra-anatomical nerve transfer alone (n = 2) or combined with anatomical reconstruction by sural nerve grafts (n = 2). One patient underwent a two-stage reconstruction, which involved a first stage anatomical brachial plexus reconstruction followed by a second stage nerve transfer. Neurotizations were performed as double (n = 3), triple (n = 1) or quadruple (n = 1) nerve or fascicular transfers. Overall, at least one year postoperatively, successful results, characterized by a muscle strength of M3 or more, were restored in all cases, two patients even achieving M4 grading in the elbow flexion. This patient series challenges the widely held dogma that brachial plexus reconstruction in older patients will produce poor outcomes. Distal nerve transfers are advantageous as they shorten the reinnervation distance. Healthy, more elderly patients should be judiciously offered the whole spectrum of reconstructive methods and postoperative rehabilitation concepts to regain useful arm and hand function and thus preserve independence after a traumatic or nontraumatic brachial plexus injury.

10.
J Neurosurg ; 139(5): 1396-1404, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029679

RESUMEN

OBJECTIVE: Intrinsic function is indispensable for dexterous hand movements. Distal ulnar nerve defects can result in intrinsic muscle dysfunction and sensory deficits. Although the ulnar nerve's fascicular anatomy has been extensively studied, quantitative and topographic data on motor axons traveling within this nerve remain elusive. METHODS: The ulnar nerves of 14 heart-beating organ donors were evaluated. The motor branches to the flexor carpi ulnaris (FCU) and flexor digitorum profundus (FDP) muscles and the dorsal branch (DoBUN) as well as 3 segments of the ulnar nerve were harvested in 2-cm increments. Samples were subjected to double immunofluorescence staining using antibodies against choline acetyltransferase and neurofilament. RESULTS: Samples revealed more than 25,000 axons in the ulnar nerve at the forearm level, with a motor axon proportion of only 5%. The superficial and DoBUN showed high axon numbers of more than 21,000 and 9300, respectively. The axonal mapping of more than 1300 motor axons revealed an increasing motor/sensory ratio from the proximal ulnar nerve (1:20) to the deep branch of the ulnar nerve (1:7). The motor branches (FDP and FCU) showed that sensory axons outnumber motor axons by a ratio of 10:1. CONCLUSIONS: Knowledge of the detailed axonal architecture of the motor and sensory components of the human ulnar nerve is of the utmost importance for surgeons considering fascicular grafting or nerve transfer surgery. The low number of efferent axons in motor branches of the ulnar nerve and their distinct topographical distribution along the distal course of the nerve is indispensable information for modern nerve surgery.


Asunto(s)
Transferencia de Nervios , Nervio Cubital , Humanos , Antebrazo/inervación , Músculo Esquelético/inervación , Codo , Axones/fisiología
11.
Handchir Mikrochir Plast Chir ; 55(2): 140-147, 2023 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-37023761

RESUMEN

The treatment of peripheral nerve pathologies requires a rapid and precise diagnosis. However, the correct identification of nerve pathologies is often difficult and valuable time is lost in the process. In this position paper of the German-Speaking Group for Microsurgery of Peripheral Nerves and Vessels (DAM), we describe the current evidence for various perioperative diagnostics for the detection of traumatic peripheral nerve lesions or compression syndromes. In detail, we evaluated the importance of clinical examinations, electrophysiology, nerve ultrasound and magnetic resonance neurography. Additionally, we surveyed our members for their diagnostic approach in this regard. The statements are based on a consensus workshop on the 42nd meeting of the DAM in Graz, Austria.


Asunto(s)
Microcirugia , Nervios Periféricos , Humanos , Síndrome , Nervios Periféricos/cirugía , Austria , Imagen por Resonancia Magnética
12.
J Pers Med ; 13(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836578

RESUMEN

The peroneal nerve is one of the most commonly injured nerves of the lower extremity. Nerve grafting has been shown to result in poor functional outcomes. The aim of this study was to evaluate and compare anatomical feasibility as well as axon count of the tibial nerve motor branches and the tibialis anterior motor branch for a direct nerve transfer to reconstruct ankle dorsiflexion. In an anatomical study on 26 human body donors (52 extremities) the muscular branches to the lateral (GCL) and the medial head (GCM) of the gastrocnemius muscle, the soleus muscle (S) as well as the tibialis anterior muscle (TA) were dissected, and each nerve's external diameter was measured. Nerve transfers from each of the three donor nerves (GCL, GCM, S) to the recipient nerve (TA) were performed and the distance between the achievable coaptation site and anatomic landmarks was measured. Additionally, nerve samples were taken from eight extremities, and antibody as well immunofluorescence staining were performed, primarily evaluating axon count. The average diameter of the nerve branches to the GCL was 1.49 ± 0.37, to GCM 1.5 ± 0.32, to S 1.94 ± 0.37 and to TA 1.97 ± 0.32 mm, respectively. The distance from the coaptation site to the TA muscle was 43.75 ± 12.1 using the branch to the GCL, 48.31 ± 11.32 for GCM, and 19.12 ± 11.68 mm for S, respectively. The axon count for TA was 1597.14 ± 325.94, while the donor nerves showed 297.5 ± 106.82 (GCL), 418.5 ± 62.44 (GCM), and 1101.86 ± 135.92 (S). Diameter and axon count were significantly higher for S compared to GCL as well as GCM, while regeneration distance was significantly lower. The soleus muscle branch exhibited the most appropriate axon count and nerve diameter in our study, while also reaching closest to the tibialis anterior muscle. These results indicate the soleus nerve transfer to be the favorable option for the reconstruction of ankle dorsiflexion, in comparison to the gastrocnemius muscle branches. This surgical approach can be used to achieve a biomechanically appropriate reconstruction, in contrast to tendon transfers which generally only achieve weak active dorsiflexion.

13.
J Adv Res ; 44: 135-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725185

RESUMEN

INTRODUCTION: Neuromuscular control of the facial expressions is provided exclusively via the facial nerve. Facial muscles are amongst the most finely tuned effectors in the human motor system, which coordinate facial expressions. In lower vertebrates, the extracranial facial nerve is a mixed nerve, while in mammals it is believed to be a pure motor nerve. However, this established notion does not agree with several clinical signs in health and disease. OBJECTIVES: To elucidate the facial nerve contribution to the facial muscles by investigating axonal composition of the human facial nerve. To reveal new innervation pathways of other axon types of the motor facial nerve. METHODS: Different axon types were distinguished using specific molecular markers (NF, ChAT, CGRP and TH). To elucidate the functional role of axon types of the facial nerve, we used selective elimination of other neuronal support from the trigeminal nerve. We used retrograde neuronal tracing, three-dimensional imaging of the facial muscles, and high-fidelity neurophysiological tests in animal model. RESULTS: The human facial nerve revealed a mixed population of only 85% motor axons. Rodent samples revealed a fiber composition of motor, afferents and, surprisingly, sympathetic axons. We confirmed the axon types by tracing the originating neurons in the CNS. The sympathetic fibers of the facial nerve terminated in facial muscles suggesting autonomic innervation. The afferent fibers originated in the facial skin, confirming the afferent signal conduction via the facial nerve. CONCLUSION: These findings reveal new innervation pathways via the facial nerve, support the sympathetic etiology of hemifacial spasm and elucidate clinical phenomena in facial nerve regeneration.


Asunto(s)
Nervio Facial , Espasmo Hemifacial , Animales , Humanos , Axones/fisiología , Músculos Faciales , Nervio Facial/fisiología , Vías Nerviosas , Roedores
15.
J Hand Surg Eur Vol ; 48(3): 182-190, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649123

RESUMEN

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.


Asunto(s)
Miembros Artificiales , Animales , Humanos , Extremidad Superior/cirugía , Mano/cirugía , Mano/fisiología , Sensación , Retroalimentación Sensorial , Diseño de Prótesis
16.
IEEE Trans Biomed Eng ; 70(3): 789-799, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36037457

RESUMEN

OBJECTIVE: The objective clinical evaluation of user's capabilities to handle their prosthesis is done using various tests which primarily focus on the task completion speed and do not explicitly account for the potential presence of compensatory motions. Given that the excessive body compensation is a common indicator of inadequate prosthesis control, tests which include subjective observations on the quality of performed motions have been introduced. However, these metrics are then influenced by the examiner's opinions, skills, and training making them harder to standardize across patient pools and compare across different prosthetic technologies. Here we aim to objectively quantify the severity of body compensations present in myoelectric prosthetic hand users and evaluate the extent to which traditional objective clinical scores are still able to capture them. METHODS: We have instructed 9 below-elbow prosthesis users and 9 able-bodied participants to complete three established objective clinical tests: Box-and-Blocks-Test, Clothespin-Relocation-Test, and Southampton-Hand-Assessment-Procedure. During all tests, upper-body kinematics has been recorded. RESULTS: While the analysis showed that there are some correlations between the achieved clinical scores and the individual body segment travel distances and average speeds, there were only weak correlations between the clinical scores and the observed ranges of motion. At the same time, the compensations were observed in all prosthesis users and, for the most part, they were substantial across the tests. CONCLUSION: The sole reliance on the currently available objective clinical assessment methods seems inadequate as the compensatory movements are prominent in prosthesis users and yet not sufficiently accounted for.


Asunto(s)
Miembros Artificiales , Humanos , Movimiento , Movimiento (Física) , Mano , Extremidad Superior , Diseño de Prótesis , Electromiografía , Fenómenos Biomecánicos
17.
Nat Biomed Eng ; 7(4): 473-485, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34059810

RESUMEN

Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.


Asunto(s)
Miembros Artificiales , Biónica , Humanos , Diseño de Prótesis , Extremidades , Electrodos
18.
Histochem Cell Biol ; 159(1): 23-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36201037

RESUMEN

Immunohistochemistry is a powerful tool for studying neuronal tissue from humans at the molecular level. Obtaining fresh neuronal tissue from human organ donors is difficult and sometimes impossible. In anatomical body donations, neuronal tissue is dedicated to research purposes and because of its easier availability, it may be an alternative source for research. In this study, we harvested spinal cord from a single organ donor 2 h (h) postmortem and spinal cord from body donors 24, 48, and 72 h postmortem and tested how long after death, valid multi-color immunofluorescence or horseradish peroxidase (HRP) immunohistochemistry is possible. We used general and specific neuronal markers and glial markers for immunolabeling experiments. Here we showed that it is possible to visualize molecularly different neuronal elements with high precision in the body donor spinal cord 24 h postmortem and the quality of the image data was comparable to those from the fresh organ donor spinal cord. High-contrast multicolor images of the 24-h spinal cords allowed accurate automated quantification of different neuronal elements in the same sample. Although there was antibody-specific signal reduction over postmortem intervals, the signal quality for most antibodies was acceptable at 48 h but no longer at 72 h postmortem. In conclusion, our study has defined a postmortem time window of more than 24 h during which valid immunohistochemical information can be obtained from the body donor spinal cord. Due to the easier availability, neuronal tissue from body donors is an alternative source for basic and clinical research.


Asunto(s)
Neuronas , Médula Espinal , Humanos , Inmunohistoquímica , Técnica del Anticuerpo Fluorescente , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...