Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Diabetes Endocrinol ; 11(12): 915-925, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931637

RESUMEN

BACKGROUND: Metabolic outcomes in type 1 diabetes remain suboptimal. Disease modifying therapy to prevent ß-cell loss presents an alternative treatment framework but the effect on metabolic outcomes is unclear. We, therefore, aimed to define the relationship between insulin C-peptide as a marker of ß-cell function and metabolic outcomes in new-onset type 1 diabetes. METHODS: 21 trials of disease-modifying interventions within 100 days of type 1 diabetes diagnosis comprising 1315 adults (ie, those 18 years and older) and 1396 children (ie, those younger than 18 years) were combined. Endpoints assessed were stimulated area under the curve C-peptide, HbA1c, insulin use, hypoglycaemic events, and composite scores (such as insulin dose adjusted A1c, total daily insulin, U/kg per day, and BETA-2 score). Positive studies were defined as those meeting their primary endpoint. Differences in outcomes between active and control groups were assessed using the Wilcoxon rank test. FINDINGS: 6 months after treatment, a 24·8% greater C-peptide preservation in positive studies was associated with a 0·55% lower HbA1c (p<0·0001), with differences being detectable as early as 3 months. Cross-sectional analysis, combining positive and negative studies, was consistent with this proportionality: a 55% improvement in C-peptide preservation was associated with 0·64% lower HbA1c (p<0·0001). Higher initial C-peptide levels and greater preservation were associated with greater improvement in HbA1c. For HbA1c, IDAAC, and BETA-2 score, sample size predictions indicated that 2-3 times as many participants per group would be required to show a difference at 6 months as compared with C-peptide. Detecting a reduction in hypoglycaemia was affected by reporting methods. INTERPRETATION: Interventions that preserve ß-cell function are effective at improving metabolic outcomes in new-onset type 1 diabetes, confirming their potential as adjuncts to insulin. We have shown that improvements in HbA1c are directly proportional to the degree of C-peptide preservation, quantifying this relationship, and supporting the use of C-peptides as a surrogate endpoint in clinical trials. FUNDING: JDRF and Diabetes UK.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adulto , Niño , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Péptido C/uso terapéutico , Estudios Transversales , Hemoglobina Glucada , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico
2.
EBioMedicine ; 76: 103814, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35051729

RESUMEN

BACKGROUND: Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity. METHODS: The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR. FINDINGS: Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192-5p and -194-5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker. INTERPRETATION: Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use. FUNDING: Funded by the NIHR Cambridge Biomedical Research Centre, the Medical Research Council, the Rosetrees and Stoneygate Trusts, and CRUK core grants.


Asunto(s)
Esófago de Barrett , Neoplasias Esofágicas , MicroARNs , Inteligencia Artificial , Esófago de Barrett/genética , Biomarcadores/metabolismo , Estudios Transversales , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , MicroARNs/genética
3.
Crit Rev Toxicol ; 51(3): 264-282, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34038674

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.


Asunto(s)
Biomarcadores , MicroARNs , Toxicología , Humanos
4.
Toxicol Sci ; 180(1): 1-16, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33367795

RESUMEN

Drug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urinary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted. The overall goal was to propose miRNA biomarker candidates for DIKI that could supplement information provided by protein kidney biomarkers in urine. Rats were treated with nephrotoxicants causing injury to distinct nephron segments: the glomerulus, proximal tubule, thick ascending limb (TAL) of the loop of Henle and CD. Meta-analysis identified miR-192-5p as a potential proximal tubule-specific urinary miRNA candidate. This result was supported by data obtained in laser capture microdissection nephron segments showing that miR-192-5p expression was enriched in the proximal tubule. Discriminative miRNAs including miR-221-3p and -222-3p were increased in urine from rats treated with TAL versus proximal tubule toxicants in accordance with their expression localization in the kidney. Urinary miR-210-3p increased up to 40-fold upon treatment with TAL toxicants and was also enriched in laser capture microdissection samples containing TAL and/or CD versus proximal tubule. miR-23a-3p was enriched in the glomerulus and was increased in urine from rats treated with doxorubicin, a glomerular toxicant, but not with toxicants affecting other nephron segments. Taken together these results suggest that urinary miRNA panels sourced from specific nephron regions may be useful to discriminate the pathology of toxicant-induced lesions in the kidney, thereby contributing to DIKI biomarker development needs for industry, clinical, and regulatory use.


Asunto(s)
MicroARNs , Preparaciones Farmacéuticas , Animales , Biomarcadores , Riñón , MicroARNs/genética , Nefronas , Ratas
5.
Int J Toxicol ; 40(1): 15-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33161787

RESUMEN

Novel urinary protein biomarkers have recently been identified and qualified in rats for the early detection of renal injury in drug development studies. However, there are few reports on the utility of these renal biomarkers in mice, another important and widely used preclinical animal species for drug development studies. The purpose of this study was to assess the value of these recently qualified biomarkers for the early detection of drug-induced kidney injury (DIKI) in different strains of mice using multiple assay panels. To this end, we evaluated biomarker response to kidney injury induced by several nephrotoxic agents including amphotericin B, compound X, and compound Y. Several of the biomarkers were shown to be sensitive to DIKI in mice. When measured, urinary albumin and neutrophil gelatinase-associated lipocalin were highly sensitive to renal tubular injury, regardless of the assay platforms, mouse strain, and nephrotoxic agents. Depending on the type of renal tubular injury, kidney injury molecule-1 was also highly sensitive, regardless of the assay platforms and mouse strain. Osteopontin and cystatin C were modestly to highly sensitive to renal tubular injury, but the assay type and/or the mouse strain should be considered before using these biomarkers. Calbindin D28 was highly sensitive to injury to the distal nephron in mice. To our knowledge, this is the first report that demonstrates the utility of novel urinary biomarkers evaluated across multiple assay platforms and nephrotoxicants in different mice strains with DIKI. These results will help drug developers make informed decisions when selecting urinary biomarkers for monitoring DIKI in mice for toxicology studies.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Anfotericina B/toxicidad , Biomarcadores/orina , Desarrollo de Medicamentos/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Valor Predictivo de las Pruebas
6.
Nat Commun ; 9(1): 5318, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552320

RESUMEN

Oocyte-specific miRNA function remains unclear in mice and worms because loss of Dgcr8 and Dicer from mouse and worm oocytes, respectively, does not yield oogenic defects. These data lead to several models: (a) miRNAs are not generated in oocytes; (b) miRNAs are generated but do not perform an oogenic function; (c) functional oocyte miRNAs are generated in a manner independent of these enzymes. Here, we test these models using a combination of genomic, expression and functional analyses on the C. elegans germline. We identify a repertoire of at least twenty-three miRNAs that accumulate in four spatial domains in oocytes. Genetic tests demonstrate that oocyte-expressed miRNAs regulate key oogenic processes within their respective expression domains. Unexpectedly, we find that over half of the oocyte-expressed miRNAs are generated through an unknown Drosha independent mechanism. Thus, a functional miRNA repertoire generated via Drosha dependent and independent pathways regulates C. elegans oocyte development.


Asunto(s)
Caenorhabditis elegans/genética , Genómica , MicroARNs/genética , MicroARNs/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis/fisiología , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidad/genética , Fertilidad/fisiología , Células Germinativas , Hibridación in Situ , Meiosis/fisiología , Oocitos/citología , Interferencia de ARN , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
7.
Genes Dev ; 29(10): 1018-31, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25995187

RESUMEN

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.


Asunto(s)
Hipoxia de la Célula/fisiología , Variaciones en el Número de Copia de ADN/genética , Regulación de la Expresión Génica , Animales , Quinasas CDC2-CDC28/genética , Hipoxia de la Célula/genética , Línea Celular , Proliferación Celular , Células Cultivadas , Resistencia a Antineoplásicos/genética , Humanos , Pez Cebra
8.
PLoS One ; 7(10): e47803, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118896

RESUMEN

Ran-binding protein M (RanBPM) is a nucleocytoplasmic protein of yet unknown function. We have previously shown that RanBPM inhibits expression of the anti-apoptotic factor Bcl-2 and promotes apoptosis induced by DNA damage. Here we show that the effects of RanBPM on Bcl-2 expression occur through a regulation of the ERK signaling pathway. Transient and stable down-regulation of RanBPM stimulated ERK phosphorylation, leading to Bcl-2 up-regulation, while re-expression of RanBPM reversed these effects. RanBPM was found to inhibit MEK and ERK activation induced by ectopic expression of active RasV12. Activation of ERK by active c-Raf was also prevented by RanBPM. Expression of RanBPM correlated with a marked decrease in the protein levels of ectopically expressed active c-Raf and also affected the expression of endogenous c-Raf. RanBPM formed a complex with both active c-Raf, consisting of the C-terminal kinase domain, and endogenous c-Raf in mammalian cells. In addition, RanBPM was found to decrease the binding of Hsp90 to c-Raf. Finally, we show that loss of RanBPM expression confers increased cell proliferation and cell migration properties to HEK293 cells. Altogether, these findings establish RanBPM as a novel inhibitor of the ERK pathway through an interaction with the c-Raf complex and a regulation of c-Raf stability, and provide evidence that RanBPM loss of expression results in constitutive activation of the ERK pathway and promotes cellular events leading to cellular transformation and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis/genética , Proteínas del Citoesqueleto , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-raf , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo
9.
Am J Cancer Res ; 2(5): 549-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957307

RESUMEN

RanBPM is a ubiquitous protein that has been reported to regulate several cellular processes through interactions with various proteins. However, it is not known whether RanBPM may regulate gene expression patterns. As it has been shown that RanBPM interacts with a number of transcription factors, we hypothesized that it may have wide ranging effects on gene expression that may explain its function. To test this hypothesis, we generated stable RanBPM shRNA cell lines to analyze the effect of RanBPM on global gene expression. Microarray analyses were conducted comparing the gene expression profile of Hela and HCT116 RanBPM shRNA cells versus control shRNA cells. We identified 167 annotated genes significantly up- or down-regulated in the two cell lines. Analysis of the gene set revealed that down-regulation of RanBPM led to gene expression changes that affect regulation of cell, tissue, and organ development and morphology, as well as biological processes implicated in tumorigenesis. Analysis of Transcription Factor Binding Sites (TFBS) present in the gene set identified several significantly over-represented transcription factors of the Forkhead, HMG, and Homeodomain families of transcription factors, which have previously been demonstrated as having important roles in development and tumorigenesis. In addition, the combined results of these analyses suggested that several signaling pathways were affected by RanBPM down-regulation, including ERK1/2, Wnt, Notch, and PI3K/Akt pathways. Lastly, analysis of selected target genes by quantitative RT-qPCR confirmed the changes revealed by microarray. Several of the genes up-regulated in RanBPM shRNA cells encode proteins with known oncogenic functions, such as the RON tyrosine kinase, the adhesion molecule L1CAM, and transcription factor ELF3/ESE-1, suggesting that RanBPM functions as a tumor suppressor to prevent deregulated expression of these genes. Altogether, these results suggest that RanBPM does indeed function to regulate many genomic events that regulate embryonic, tissue, and cellular development as well as those involved in cancer development and progression.

10.
Mol Cancer Res ; 7(12): 1962-72, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19996306

RESUMEN

Ran-binding protein M (RanBPM) is a nucleocytoplasmic protein previously implicated in various signaling pathways, but whose function remains enigmatic. Here, we provide evidence that RanBPM functions as an activator of apoptotic pathways induced by DNA damage. First, transient expression of RanBPM in HeLa cells induced cell death through caspase activation, and in the long-term, forced expression of RanBPM impaired cell viability. RanBPM COOH-terminal domain stimulated the ability of RanBPM to induce caspase activation, whereas this activity was negatively regulated by the central SPRY domain. Second, small interfering RNA-directed knockdown of RanBPM prevented DNA damage-induced apoptosis, as evidenced by the marked reduction in caspase-3 and caspase-2 activation. This correlated with a magnitude fold increase in the survival of RanBPM-depleted cells. Following ionizing radiation treatment, we observed a progressive relocalization of RanBPM from the nucleus to the cytoplasm, suggesting that the activation of apoptotic pathways by RanBPM in response to ionizing radiation may be regulated by nucleocytoplasmic trafficking. Finally, RanBPM downregulation was associated with a marked decrease of mitochondria-associated Bax, whereas Bcl-2 overall levels were dramatically upregulated. Overall, our results reveal a novel proapoptotic function for RanBPM in DNA damage-induced apoptosis through the regulation of factors involved in the mitochondrial apoptotic pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Proteínas del Citoesqueleto/metabolismo , Daño del ADN , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/efectos de la radiación , Caspasas/metabolismo , Línea Celular , Supervivencia Celular/efectos de la radiación , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Regulación hacia Abajo/efectos de la radiación , Activación Enzimática/efectos de la radiación , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de la radiación , Radiación Ionizante , Eliminación de Secuencia , Transducción de Señal/efectos de la radiación , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...