Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 176: 116920, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876054

RESUMEN

Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.


Asunto(s)
Reposicionamiento de Medicamentos , Sarcopenia , Biología de Sistemas , Humanos , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/genética , Reposicionamiento de Medicamentos/métodos , Anciano , Animales , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Femenino , Línea Celular , Troglitazona , Terapia Molecular Dirigida , Leupeptinas/farmacología , Leupeptinas/uso terapéutico
2.
J Mater Chem A Mater ; 11(37): 19854-19859, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-38013847

RESUMEN

A multifunctional material design, integrating catalytic as well as auxiliary magnetic susception and contactless thermal sensing functionalities, unlocks catalyst-specific heating and thermometry for spatially proximate solid catalysts in a single reactor. The new concept alleviates temperature incompatibilities in tandem catalysis, as showcased for the direct production of propene from ethene, via sequential olefin dimerization and metathesis reactions.

3.
Phys Chem Chem Phys ; 23(28): 15059-15075, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34231583

RESUMEN

Although aluminium acetylacetonate, Al(C5H7O2)3, is a common precursor for chemical vapor deposition (CVD) of aluminium oxide, its gas-phase decomposition is not well-known. Here, we studied its thermal decomposition in a microreactor by double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO) between 325 and 1273 K. The reactor flow field was characterized by CFD. Quantum chemical calculations were used for the assignment of certain species. The dissociative ionization of the room temperature precursor molecule starts at a photon energy of 8.5 eV by the rupture of the bond to an acetylacetonate ligand leading to the formation of the Al(C5H7O2)2+ ion. In pyrolysis experiments, up to 49 species were detected and identified in the gas-phase, including reactive intermediates and isomeric/isobaric hydrocarbons, oxygenated species as well as aluminium containing molecules. We detected aluminium bis(diketo)acetylacetonate-H, Al(C5H7O2)C5H6O2, at m/z 224 together with acetylacetone (C5H8O2) as the major initial products formed at temperatures above 600 K. A second decomposition channel affords Al(OH)2(C5H7O2) along with the formation of a substituted pentalene ring species (C10H12O2) as assigned by Franck-Condon simulations and quantum chemical calculations. Acetylallene (C5H6O), acetone (C3H6O) and ketene (C2H2O) were major secondary decomposition products, formed upon decomposition of the primary products. Three gas-phase aromatic hydrocarbons were also detected and partially assigned for the first time: m/z 210, m/z 186 (C14H18 or C12H10O2) and m/z 146 (C11H14 or C9H6O2) and their formation mechanism is discussed. Finally, Arrhenius parameters are presented on the gas-phase decomposition kinetics of Al(C5H7O2)3, aided by numerical simulation of the flow field.

4.
J Nanosci Nanotechnol ; 11(9): 7956-61, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097512

RESUMEN

Direct reduction of nitrogen oxides is still a challenge. Strong efforts have been made in developing noble and transition metal catalysts on microporous support materials such as active carbons or zeolites. However, the required activation energy and low conversion rates still limit its breakthrough. Furthermore, infiltration of such microporous matrix materials is commonly performed by wet chemistry routes. Deep infiltration and homogeneous precursor distribution are often challenging due to precursor viscosity or electrostatic shielding and may be inhibited by pore clogging. Gas phase infiltration, as an alternative, can resolve viscosity issues and may contribute to homogeneous infiltration of precursors. In the present work new catalysts based on active carbon substrates were synthesized via chemical vapor infiltration. Iron oxide nano clusters were deposited in the microporous matrix material. Detailed investigation of produced catalysts included nitrogen oxide adsorption, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity was studied in a recycle flow reactor by time-resolved mass spectrometry at a temperature of 423 K. The infiltrated active carbons showed very homogeneous deposition of iron oxide nano clusters in the range of below 12 to 19 nm, depending on the amount of infiltrated precursor. The specific surface area was not excessively reduced, nor was the pore size distribution changed compared to the original substrate. Catalytic nitrogen oxides conversion was detected at temperatures as low as 423 K.

5.
J Nanosci Nanotechnol ; 11(9): 8416-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097596

RESUMEN

Chemical Vapor Infiltration of biological structures such as paper is used here to produce biomorphic SiC ceramics with high temperature resistance. The biological substrate materials are infiltrated with tetramethylsilane (TMS) at atmospheric pressure and elevated temperatures of 790 degrees C. A simple tube furnace (hot-wall reactor) is used for the infiltration process. As result, porous SiC-ceramics are grown which are around 20% smaller and 70% lighter than the initial substrates. This can be explained by the pyrolytic reaction of the substrates while heating them up to 790 degrees C, which is necessary for the infiltration process. Nevertheless, besides the shrinking of the substrates the geometrical form remains nearly unchanged. The resulting materials were heated up to 1000 degrees C in oxygen atmosphere in order to analyze their resistance against oxidation. After this treatment, all of them were still mechanically stable and of unchanged shape while a further mass loss was observed. This confirms the high temperature stability of the prepared materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA