Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(8): 2141-2144, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621096

RESUMEN

Phase modulators are commonly used devices in optics. Free-space phase modulators are typically constructed from optically anisotropic crystals exhibiting the Pockels effect. To preserve the light's polarization state as it propagates through the crystal, it is essential to align the polarization and the angle of incidence of the light with respect to the crystal. In this study, we demonstrate the feasibility of constructing free-space resonant phase modulators with a broad acceptance angle and minimal dependence on the polarization state of light using an acousto-optic approach. These modulators operate in the megahertz frequency range, require modest power levels, have aperture sizes exceeding 1 cm2, and feature sub-millimeter thickness.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2249-2258, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086033

RESUMEN

Polarization modulators have a broad range of applications in optics. The acceptance angle of a free-space polarization modulator is crucial for many applications. Polarization modulators that can achieve a wide acceptance angle are constructed by attaching a piezoelectric transducer to an isotropic material, and utilizing a resonant transverse interaction between light and acoustic waves. Since their demonstration in the 1960s, the design of these modulators has essentially remained the same with minor improvements in the following decades. In this work, we show that a suitable single crystal with the correct crystal orientation, functioning as both the piezoelectric transducer and the acousto-optic interaction medium, could be used for constructing a highly efficient free-space resonant polarization modulator operating at megahertz frequencies and exhibiting a wide acceptance angle. We construct the modulator using gallium arsenide, an optically isotropic and piezoelectric crystal, and demonstrate polarization modulation at 6 MHz with an input aperture of 1 cm in diameter, acceptance angle reaching ±30∘, and modulation efficiency exceeding 50%. Compared to state-of-the-art resonant photoelastic modulators, the modulator reported in this work exhibits greater than 50-fold improvement in modulation frequency for the same input aperture, while simultaneously reducing the thickness by approximately a factor of 80. Increasing the modulation frequency of photoelastic modulators from the kilohertz to the megahertz regime and substantially reducing their thickness lead to significant performance improvements for various use cases. This technological advancement also creates opportunities for utilizing these devices in new applications.

3.
Opt Express ; 30(26): 47103-47114, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558647

RESUMEN

The capability to modulate the intensity of an optical beam has scientific and practical significance. In this work, we demonstrate Y-Z cut lithium niobate acousto-optic modulators with record-high modulation efficiency, requiring only 1.5 W/cm2 for 100% modulation at 7 MHz. These modulators use a simple fabrication process; coating the top and bottom surfaces of a thin lithium niobate wafer with transparent electrodes. The fundamental shear acoustic mode of the wafer is excited through the transparent electrodes by applying voltage with frequency corresponding to the resonant frequency of this mode, confining an acoustic standing wave to the electrode region. Polarization of light propagating through this region is modulated at the applied frequency. Polarization modulation is converted to intensity modulation by placing the modulator between polarizers. To showcase an important application space for this modulator, we integrate it with a standard image sensor and demonstrate 4 megapixel time-of-flight imaging.

4.
Nat Commun ; 13(1): 1526, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318321

RESUMEN

Intensity modulators are an essential component in optics for controlling free-space beams. Many applications require the intensity of a free-space beam to be modulated at a single frequency, including wide-field lock-in detection for sensitive measurements, mode-locking in lasers, and phase-shift time-of-flight imaging (LiDAR). Here, we report a new type of single frequency intensity modulator that we refer to as a longitudinal piezoelectric resonant photoelastic modulator. The modulator consists of a thin lithium niobate wafer coated with transparent surface electrodes. One of the fundamental acoustic modes of the modulator is excited through the surface electrodes, confining an acoustic standing wave to the electrode region. The modulator is placed between optical polarizers; light propagating through the modulator and polarizers is intensity modulated with a wide acceptance angle and record breaking modulation efficiency in the megahertz frequency regime. As an illustration of the potential of our approach, we show that the proposed modulator can be integrated with a standard image sensor to effectively convert it into a time-of-flight imaging system.

5.
Opt Express ; 28(25): 37798-37810, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379608

RESUMEN

Swept-source optical coherence tomography (OCT) typically relies on expensive and complex swept-source lasers, the cost of which currently limits the suitability of OCT for new applications. In this work, we demonstrate spectrally sparse OCT utilizing randomly spaced low-bandwidth optical chirps, suitable for low-cost implementation with telecommunications grade devices. Micron scale distance estimation accuracy with a resolution of 40 µm at a standoff imaging distance greater than 10 cm is demonstrated using a stepped chirp approach with approximately 23% occupancy of 4 THz bandwidth. For imaging of sparse scenes, comparable performance to full bandwidth occupancy is verified for metallic targets.

6.
Appl Opt ; 59(5): 1430, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32225397

RESUMEN

This publisher's note corrects the Funding section in Appl. Opt.58, 2235 (2019)APOPAI0003-693510.1364/AO.58.002235.

7.
Appl Opt ; 58(9): 2235-2247, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31044926

RESUMEN

A time-of-flight imaging system is proposed and its working principle demonstrated. To realize this system, a new device, a free-space optical mixer, is designed and fabricated. A scene is illuminated (flashed) with a megahertz-level amplitude-modulated light source, and the reflected light from the scene is collected by a receiver. The receiver consists of the free-space optical mixer, comprising a photoelastic modulator sandwiched between polarizers, placed in front of a standard complementary metal-oxide-semiconductor (CMOS) image sensor. This free-space optical mixer downconverts the megahertz-level amplitude modulation frequencies into the temporal bandwidth of the image sensor. A full-scale extension of the demonstrated system will be able to measure phases and Doppler shifts for the beat tones and use signal processing techniques to estimate the distance and velocity of each point in the illuminated scene with high accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...