Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38905090

RESUMEN

In response to the worldwide COVID-19 pandemic, advanced automated technologies have emerged as valuable tools to aid healthcare professionals in managing an increased workload by improving radiology report generation and prognostic analysis. This study proposes a Multi-modality Regional Alignment Network (MRANet), an explainable model for radiology report generation and survival prediction that focuses on high-risk regions. By learning spatial correlation in the detector, MRANet visually grounds region-specific descriptions, providing robust anatomical regions with a completion strategy. The visual features of each region are embedded using a novel survival attention mechanism, offering spatially and risk-aware features for sentence encoding while maintaining global coherence across tasks. A cross-domain LLMs-Alignment is employed to enhance the image-to-text transfer process, resulting in sentences rich with clinical detail and improved explainability for radiologists. Multi-center experiments validate the overall performance and each module's composition within the model, encouraging further advancements in radiology report generation research emphasizing clinical interpretation and trustworthiness in AI models applied to medical studies.

2.
IEEE J Biomed Health Inform ; 28(6): 3732-3741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568767

RESUMEN

Health disparities among marginalized populations with lower socioeconomic status significantly impact the fairness and effectiveness of healthcare delivery. The increasing integration of artificial intelligence (AI) into healthcare presents an opportunity to address these inequalities, provided that AI models are free from bias. This paper aims to address the bias challenges by population disparities within healthcare systems, existing in the presentation of and development of algorithms, leading to inequitable medical implementation for conditions such as pulmonary embolism (PE) prognosis. In this study, we explore the diverse bias in healthcare systems, which highlights the demand for a holistic framework to reducing bias by complementary aggregation. By leveraging de-biasing deep survival prediction models, we propose a framework that disentangles identifiable information from images, text reports, and clinical variables to mitigate potential biases within multimodal datasets. Our study offers several advantages over traditional clinical-based survival prediction methods, including richer survival-related characteristics and bias-complementary predicted results. By improving the robustness of survival analysis through this framework, we aim to benefit patients, clinicians, and researchers by enhancing fairness and accuracy in healthcare AI systems.


Asunto(s)
Algoritmos , Embolia Pulmonar , Humanos , Embolia Pulmonar/mortalidad , Análisis de Supervivencia , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Bases de Datos Factuales
3.
J Imaging Inform Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514595

RESUMEN

Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.

4.
JACC Case Rep ; 29(3): 102187, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38361563

RESUMEN

Coronary artery fistulas (CAFs) are rare coronary anomalies involving the communication of an epicardial coronary artery and another cardiovascular structure. CAFs are usually easily distinguished from nearby coronary arteries. Here, we report a unique case of CAF that mimics the size, branching pattern, and appearance of a native epicardial left anterior descending artery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA