Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(24): e111132, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36345783

RESUMEN

The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.


Asunto(s)
Células-Madre Neurales , Neuronas , Animales , Ratones , Diferenciación Celular , Linaje de la Célula/genética , Corteza Cerebral , Células Madre Embrionarias , Neurogénesis/genética , Neuronas/metabolismo
2.
Mol Neurobiol ; 57(7): 3206-3218, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32506380

RESUMEN

Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Sistema Nervioso/metabolismo , Animales , Ratones
3.
Dev Neurobiol ; 78(7): 660-670, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29570951

RESUMEN

Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 660-670, 2018.


Asunto(s)
Proliferación Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 6 Dependiente de la Ciclina/deficiencia , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Células Madre/metabolismo , Animales , Recuento de Células , Ciclo Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Ratones Noqueados , Prosencéfalo/patología , Células Madre/patología
4.
Glia ; 62(5): 829-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24550001

RESUMEN

Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100ß+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100ß+ astrocytes remains unchanged in the mutant.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ciclina D1/biosíntesis , Neuroglía/metabolismo , Células Madre/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , División Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones Noqueados
5.
Glia ; 61(9): 1443-55, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23839966

RESUMEN

Little is known about the molecular mechanisms driving proliferation of glial cells after an insult to the central nervous system (CNS). To test the hypothesis that the G1 regulator cyclin D1 is critical for injury-induced cell division of glial cells, we applied an injury model that causes brain damage within a well-defined region. For this, we injected the neurotoxin ibotenic acid into the prefrontal cortex of adult mice, which leads to a local nerve cell loss but does not affect the survival of glial cells. Here, we show that cyclin D1 immunoreativity increases drastically after neurotoxin injection. We find that the cyclin D1-immunopositive (cyclin D1+) cell population within the lesioned area consists to a large extent of Olig2+ oligodendrocyte progenitor cells. Analysis of cyclin D1-deficient mice demonstrates that the proliferation rate of Olig2+ cells diminishes upon loss of cyclin D1. Further, we show that cyclin-dependent kinase (cdk) 4, but not cdk6 or cdk2, is essential for driving cell division of Olig2-expressing cells in our injury model. These data suggest that distinct cell cycle proteins regulate proliferation of Olig2+ progenitor cells following a CNS insult.


Asunto(s)
Células Madre Adultas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Lesiones Encefálicas/patología , Proliferación Celular , Corteza Cerebral/patología , Ciclina D1/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Análisis de Varianza , Animales , Bromodesoxiuridina , Proliferación Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ciclina D1/deficiencia , Quinasa 2 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 6 Dependiente de la Ciclina/deficiencia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ácido Iboténico/toxicidad , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Neurotoxinas/toxicidad , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Tiempo
6.
J Neurosci ; 33(18): 7799-810, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637172

RESUMEN

The mammalian target of rapamycin (mTOR) regulates cell growth in response to various intracellular and extracellular signals. It assembles into two multiprotein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-insensitive mTORC2. In this study, we inactivated mTORC1 in mice by deleting the gene encoding raptor in the progenitors of the developing CNS. Mice are born but never feed and die within a few hours. The brains deficient for raptor show a microcephaly starting at E17.5 that is the consequence of a reduced cell number and cell size. Changes in cell cycle length during late cortical development and increased cell death both contribute to the reduction in cell number. Neurospheres derived from raptor-deficient brains are smaller, and differentiation of neural progenitors into glia but not into neurons is inhibited. The differentiation defect is paralleled by decreased Stat3 signaling, which is a target of mTORC1 and has been implicated in gliogenesis. Together, our results show that postnatal survival, overall brain growth, and specific aspects of brain development critically depend on mTORC1 function.


Asunto(s)
Encéfalo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Microcefalia/genética , Microcefalia/patología , Neuroglía/patología , Proteínas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/genética , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Bromodesoxiuridina/metabolismo , Caspasa 3/metabolismo , Ciclo Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Microcefalia/mortalidad , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Proteínas/genética , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo
7.
Epigenetics ; 7(7): 676-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22647289

RESUMEN

In the developing forebrain, neural stem and progenitor cells generate a large variety of neurons with specific functions in the mature cortex. A central issue is to understand the roles of transcriptional networks and regulatory pathways that control these complex developmental processes. The proto-oncogene Ski is a transcriptional regulator linked to the human 1p36 deletion syndrome, which involves a set of phenotypes including nervous system defects. Ski shows a dynamic expression pattern during cortical development and, accordingly, the phenotype of Ski-deficient cortices is complex, involving altered cell cycle characteristics of neural progenitors, disturbed timing of neurogenesis and mis-specification of projection neurons. Ski is likely to play a role in various pathways by virtue of its ability to interact with a range of signaling molecules, thereby modulating transcriptional activity of corresponding target genes. Ski regulates proliferation and differentiation of various cell types, and more recent data from my laboratory demonstrates that Ski is also involved in the specification of cortical projection neurons. This Point-of-View elucidates the role of Ski as an essential linker between sequence-specific transcription factors and non-DNA binding cofactors with chromatin modifying activities. In particular, it puts forward the hypothesis that the diverse functions of Ski as a co-repressor might be related to its association with distinct HDAC-complexes.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Histonas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Diferenciación Celular , Corteza Cerebral/crecimiento & desarrollo , Deleción Cromosómica , Trastornos de los Cromosomas , Cromosomas Humanos Par 1/metabolismo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Neuronas/citología , Neuronas/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 109(9): 3546-51, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22334647

RESUMEN

First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cuerpo Calloso/citología , Proteínas de Unión al ADN/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/biosíntesis , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/biosíntesis , Agenesia del Cuerpo Calloso/embriología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Animales , Axones/ultraestructura , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/deficiencia , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Modelos Genéticos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Nucleosomas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
9.
Cell Tissue Res ; 347(1): 51-64, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21647564

RESUMEN

c-Ski is an evolutionary conserved protein that is involved in diverse cellular processes such as proliferation, differentiation, transformation, and tumor progression. A large range of cellular partners of c-Ski, including transcription factors, chromatin-remodeling molecules, tumor suppressors, and nuclear hormone receptors, has been identified. Moreover, numerous mechanisms have been described by which c-Ski regulates essential signaling pathways, e.g., the TGFß pathway. In this review, we summarize the diverse roles attributed to c-Ski during normal development and in cancer progression and discuss future strategies to unravel further the complex nature of c-Ski actions in a context-dependent manner.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/patología , Filogenia , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/clasificación , Proteínas Proto-Oncogénicas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Alineación de Secuencia , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
10.
J Cell Biol ; 182(3): 519-30, 2008 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-18695043

RESUMEN

Transforming growth factor beta (TGFbeta) promotes epithelial cell differentiation but induces Schwann cell proliferation. We show that the protooncogene Ski (Sloan-Kettering viral oncogene homologue) is an important regulator of these effects. TGFbeta down-regulates Ski in epithelial cells but not in Schwann cells. In Schwann cells but not in epithelial cells, retinoblastoma protein (Rb) is up-regulated by TGFbeta. Additionally, both Ski and Rb move to the cytoplasm, where they partially colocalize. In vivo, Ski and phospho-Rb (pRb) appear to interact in the Schwann cell cytoplasm of developing sciatic nerves. Ski overexpression induces Rb hyperphosphorylation, proliferation, and colocalization of both proteins in Schwann cell and epithelial cell cytoplasms independently of TGFbeta treatment. Conversely, Ski knockdown in Schwann cells blocks TGFbeta-induced proliferation and pRb cytoplasmic relocalization. Our findings reveal a critical function of fine-tuned Ski levels in the control of TGFbeta effects on the cell cycle and suggest that at least a part of Ski regulatory effects on TGFbeta-induced proliferation of Schwann cells is caused by its concerted action with Rb.


Asunto(s)
Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Proteínas Proto-Oncogénicas/metabolismo , Células de Schwann/citología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Humanos , Vaina de Mielina/metabolismo , Especificidad de Órganos , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Ratas , Proteína de Retinoblastoma/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/embriología , Nervio Ciático/metabolismo , Serina/metabolismo , Regulación hacia Arriba
11.
Mol Cell Neurosci ; 37(3): 519-27, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18191580

RESUMEN

Peripheral myelin formation depends on axonal signals that tightly control proliferation and differentiation of the associated Schwann cells. Here we demonstrate that the molecular program controlling proliferation of Schwann cells switches at birth. We have analyzed the requirements for three members of the cyclin-dependent kinase (cdk) family in Schwann cells using cdk-deficient mice. Mice lacking cdk4 showed a drastic decrease in the proliferation rate of Schwann cells at postnatal days 2 and 5, but proliferation was unaffected at embryonic day 18. In contrast, ablation of cdk2 and cdk6 had no significant influence on postnatal Schwann cell proliferation. Taken together, these findings indicate that postnatal Schwann cell proliferation is uniquely controlled by cdk4. Despite the lack of the postnatal wave of Schwann cell proliferation, axons were normally myelinated in adult cdk4-deficient sciatic nerves. Following nerve injury, Schwann cells lacking cdk4 were unable to re-enter the cell cycle, while Schwann cells deficient in cdk2 or cdk6 displayed proliferation rates comparable to controls. We did not observe compensatory effects such as elevated cdk4 levels in uninjured or injured nerves of cdk2 or cdk6-deficient mice. Our data demonstrate that prenatal and postnatal Schwann cell proliferation are driven by distinct molecular cues, and that postnatal proliferation is not a prerequisite for the generation of Schwann cell numbers adequate for correct myelination.


Asunto(s)
Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Neuropatía Ciática/enzimología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Ciclo Celular/fisiología , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina/deficiencia , Quinasa 4 Dependiente de la Ciclina/deficiencia , Quinasa 6 Dependiente de la Ciclina/deficiencia , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Noqueados , Ratas , Degeneración Walleriana/metabolismo
12.
J Neurosci ; 27(14): 3677-85, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17409231

RESUMEN

Multiple molecular mechanisms influence nerve regeneration. Because serine proteases were shown to affect peripheral nerve regeneration, we performed nerve crush experiments to study synapse reinnervation in adult mice lacking the serpin protease nexin-1 (PN-1). PN-1 is a potent endogenous inhibitor of thrombin, trypsin, tissue plasminogen activators (tPAs), and urokinase plasminogen activators. Compared with the wild type, a significant delay in synapse reinnervation was detected in PN-1 knock-out (KO) animals, which was associated with both reduced proliferation and increased apoptosis of Schwann cells. Various factors known to affect Schwann cells were also altered. Fibrin deposits, tPA activity, mature BDNF, and the low-affinity p75 neurotrophin receptor were increased in injured sciatic nerves of mutant mice. To test whether the absence of PN-1 in Schwann cells or in the axon caused delay in reinnervation, PN-1 was overexpressed exclusively in the nerves of PN-1 KO mice. Neuronal PN-1 expression did not rescue the delayed reinnervation. The results suggest that Schwann cell-derived PN-1 is crucial for proper reinnervation through its contribution to the autocrine control of proliferation and survival. Thus, the precise balance between distinct proteases and serpins such as PN-1 can modulate the overall impact on the kinetics of recovery.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Compresión Nerviosa , Receptores de Superficie Celular/deficiencia , Recuperación de la Función/fisiología , Neuropatía Ciática/enzimología , Neuropatía Ciática/fisiopatología , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Compresión Nerviosa/métodos , Regeneración Nerviosa/fisiología , Nexinas de Proteasas , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Células de Schwann/enzimología , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Neuropatía Ciática/genética
13.
Dev Biol ; 304(1): 394-408, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17292876

RESUMEN

Multiple signaling pathways regulate proliferation and differentiation of neural progenitor cells during early development of the central nervous system (CNS). In the spinal cord, dorsal signaling by bone morphogenic protein (BMP) acts primarily as a patterning signal, while canonical Wnt signaling promotes cell cycle progression in stem and progenitor cells. However, overexpression of Wnt factors or, as shown here, stabilization of the Wnt signaling component beta-catenin has a more prominent effect in the ventral than in the dorsal spinal cord, revealing local differences in signal interpretation. Intriguingly, Wnt signaling is associated with BMP signal activation in the dorsal spinal cord. This points to a spatially restricted interaction between these pathways. Indeed, BMP counteracts proliferation promoted by Wnt in spinal cord neuroepithelial cells. Conversely, Wnt antagonizes BMP-dependent neuronal differentiation. Thus, a mutually inhibitory crosstalk between Wnt and BMP signaling controls the balance between proliferation and differentiation. A model emerges in which dorsal Wnt/BMP signal integration links growth and patterning, thereby maintaining undifferentiated and slow-cycling neural progenitors that form the dorsal confines of the developing spinal cord.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular , Células Neuroepiteliales/fisiología , Transducción de Señal/fisiología , Médula Espinal/embriología , Proteínas Wnt/metabolismo , Animales , Western Blotting , Bromodesoxiuridina , Galactósidos , Indoles , Ratones , Microscopía Fluorescente , Modelos Biológicos , Células Neuroepiteliales/metabolismo
14.
J Neurosci ; 26(29): 7665-73, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16855094

RESUMEN

Previous reports, including transplantation experiments using dominant-negative inhibition of beta1-integrin signaling in oligodendrocyte progenitor cells, suggested that beta1-integrin signaling is required for myelination. Here, we test this hypothesis using conditional ablation of the beta1-integrin gene in oligodendroglial cells during the development of the CNS. This approach allowed us to study oligodendroglial beta1-integrin signaling in the physiological environment of the CNS, circumventing the potential drawbacks of a dominant-negative approach. We found that beta1-integrin signaling has a much more limited role than previously expected. Although it was involved in stage-specific oligodendrocyte cell survival, beta1-integrin signaling was not required for axon ensheathment and myelination per se. We also found that, in the spinal cord, remyelination occurred normally in the absence of beta1-integrin. We conclude that, although beta1-integrin may still contribute to other aspects of oligodendrocyte biology, it is not essential for myelination and remyelination in the CNS.


Asunto(s)
Sistema Nervioso Central/fisiología , Integrina beta1/metabolismo , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis , Axones/fisiología , Supervivencia Celular , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Cerebelo/fisiología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/fisiología , Eliminación de Gen , Integrina beta1/genética , Ratones , Ratones Noqueados , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología
15.
J Neurosci ; 26(7): 2124-31, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16481445

RESUMEN

Neuregulin/erbB signaling is critically required for survival and proliferation of Schwann cells as well as for establishing correct myelin thickness of peripheral nerves during development. In this study, we investigated whether erbB2 signaling in Schwann cells is also essential for the maintenance of myelinated peripheral nerves and for Schwann cell proliferation and survival after nerve injury. To this end, we used inducible Cre-loxP technology using a PLP-CreERT2 allele to ablate erbB2 in adult Schwann cells. ErbB2 expression was markedly reduced after induction of erbB2 gene disruption with no apparent effect on the maintenance of already established myelinated peripheral nerves. In contrast to development, Schwann cell proliferation and survival were not impaired in mutant animals after nerve injury, despite reduced levels of MAPK-P (phosphorylated mitogen-activated protein kinase) and cyclin D1. ErbB1 and erbB4 do not compensate for the loss of erbB2. We conclude that adult Schwann cells do not require major neuregulin signaling through erbB2 for proliferation and survival after nerve injury, in contrast to development and in cell culture.


Asunto(s)
Proteínas Portadoras/genética , Genes erbB-2/fisiología , Vaina de Mielina/fisiología , Células de Schwann/fisiología , Animales , Secuencia de Bases , División Celular , Cartilla de ADN , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Vaina de Mielina/patología , Neurregulina-1/fisiología , Células de Schwann/citología , Células de Schwann/patología , Transducción de Señal
16.
Glia ; 53(2): 147-57, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16206162

RESUMEN

Regulated cell proliferation is a crucial prerequisite for Schwann cells to achieve myelination in development and regeneration. In the present study, we have investigated the function of the cell cycle inhibitors p21 and p16 as potential regulators of Schwann cell proliferation, using p21- or p16-deficient mice. We report that both inhibitors are required for proper withdrawal of Schwann cells from the cell cycle during development and following injury. Postnatal Schwann cells express p21 exclusively in the cytoplasm, first detectable at postnatal day 7. This cytoplasmic p21 expression is necessary for proper Schwann cell proliferation control in the late development of peripheral nerves. After axonal damage, p21 is found in Schwann cell nuclei during the initiation of the proliferation period. This stage is critically regulated by p21, since loss of p21 leads to a strong increase in Schwann cell proliferation. Unexpectedly, p21 levels are upregulated in this phase suggesting that the role of p21 may be more complex than purely inhibitory for the Schwann cell cycle. However, inhibition of Schwann cell proliferation is the overriding crucial function of p21 and p16 in peripheral nerves as revealed by the consequences of loss-of-function in development and after injury. Different mechanisms appear to underlie the inhibitory function, depending on whether p21 is cytoplasmic or nuclear.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Células de Schwann/efectos de los fármacos , Adenoviridae/genética , Animales , Western Blotting , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Técnicas para Inmunoenzimas , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones , Fibras Nerviosas/fisiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nervio Ciático/lesiones , Piel/lesiones , Piel/patología , Transfección , Cicatrización de Heridas
17.
Hum Mol Genet ; 14(23): 3685-95, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16249189

RESUMEN

Charcot-Marie-Tooth disease (CMT) comprises a family of clinically and genetically very heterogeneous hereditary peripheral neuropathies and is one of the most common inherited neurological disorders. We have generated a mouse model for CMT type 4B1 using embryonic stem cell technology. To this end, we introduced a stop codon into the Mtmr2 locus within exon 9, at the position encoding amino acid 276 of the MTMR2 protein (E276X). Concomitantly, we have deleted the chromosomal region immediately downstream of the stop codon up to within exon 13. The resulting allele closely mimics the mutation found in a Saudi Arabian CMT4B1 patient. Animals homozygous for the mutation showed various degrees of complex myelin infoldings and outfoldings exclusively in peripheral nerves, in agreement with CMT4B1 genetics and pathology. Mainly, paranodal regions of the myelin sheath were affected, with a high degree of quantitative and qualitative variability between individuals. This pathology was progressive with age, and axonal damage was occasionally observed. Distal nerve regions were more affected than proximal parts, in line with the distribution in CMT. However, we found no significant electrophysiological changes, even in aged (16-month-old) mice, suggesting that myelin infoldings and outfoldings per se are not invariably associated with detectable electrophysiological abnormalities. Our animal model provides a basis for future detailed molecular and cellular studies on the underlying disease mechanisms in CMT4B1. Such an analysis will reveal how the disease develops, in particular, the enigmatic myelin infoldings and outfoldings as well as axonal damage, and provide mechanistic insights that may aid in the development of potential therapeutic approaches.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Modelos Animales de Enfermedad , Ratones , Vaina de Mielina/metabolismo , Nervios Periféricos/patología , Proteínas Tirosina Fosfatasas/genética , Alelos , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Codón sin Sentido/genética , Electrofisiología , Homocigoto , Humanos , Inmunohistoquímica , Ratones Mutantes Neurológicos , Vaina de Mielina/ultraestructura , Nervios Periféricos/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras , Eliminación de Secuencia
18.
Neuron ; 43(4): 499-511, 2004 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15312649

RESUMEN

Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.


Asunto(s)
Proteínas de Unión al ADN/genética , Vaina de Mielina/fisiología , Proteínas Proto-Oncogénicas/genética , Proto-Oncogenes/fisiología , Células de Schwann/citología , Células de Schwann/metabolismo , Animales , Ciclo Celular/genética , División Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Vaina de Mielina/genética , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/fisiología , Ratas , Ratas Wistar , Nervio Ciático/citología , Nervio Ciático/metabolismo , Transfección
19.
Mol Cell Neurosci ; 22(4): 430-40, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12727441

RESUMEN

Inducible transgenesis provides a valuable technique for the analysis of gene function in vivo. We report the generation and characterization of mouse lines carrying glia lineage-specific transgenes expressing an improved variant of the tamoxifen-inducible Cre recombinase, CreERT2, where the recombinase is fused to a mutated ligand binding domain of the human estrogen receptor. Using a PLP-CreERT2 transgene, we have generated mice that show specific inducible Cre function, as analyzed by cross-breeding experiments into the Rosa26 Cre-LacZ reporter line, in developing and adult Schwann cells, in mature myelinating oligodendrocytes, and in undifferentiated NG2-positive oligodendrocyte precursors in the adult. Using a P0Cx-CreERT2 transgene, we have also established mouse lines with inducible Cre function specifically in the Schwann cell lineage. These tamoxifen-inducible CreERT2 lines will allow detailed spatiotemporally controlled analysis of gene functions in loxP-based conditional mutant mice in both developing and adult Schwann cells and in the oligodendrocyte lineage.


Asunto(s)
Regulación de la Expresión Génica/genética , Integrasas/genética , Mutagénesis/genética , Oligodendroglía/metabolismo , Células de Schwann/metabolismo , Tamoxifeno/farmacología , Transgenes/genética , Proteínas Virales/genética , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Linaje de la Célula/genética , Relación Dosis-Respuesta a Droga , Femenino , Feto , Genes Reporteros/genética , Lactancia/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Mutagénesis/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/crecimiento & desarrollo , Estructura Terciaria de Proteína/genética , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión , Células de Schwann/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Transgenes/efectos de los fármacos
20.
J Neurosci Res ; 67(4): 443-9, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11835311

RESUMEN

Overexpression of PMP22 is responsible for the most common form of inherited neuropathy, Charcot-Marie-Tooth disease (CMT) type 1A. The PMP22-transgenic rat (CMT rat) is an animal model of CMT1A, and its peripheral nerves show the characteristic features of ongoing demyelination and remyelination that is also seen in CMT1A patients. Since Schwann cell proliferation is a prominent feature of peripheral nerves in inherited peripheral neuropathies, we examined proliferation and the expression of cyclin D1 in CMT rats. D-type cyclins are required for the initial steps in cell division and nuclear import is crucial for the function of cyclin D1 in promoting cell proliferation. Like normal myelinating Schwann cells in wild-type rats, remyelinating Schwann cells in CMT rats show perinuclear cyclin D1 expression. Schwann cells with nuclear cyclin D1 expression, as well as proliferating Schwann cells, were both associated with demyelinated axonal segments. Supernumerary onion bulb Schwann cells, however, do not express cyclin D1 and were not proliferating. Thus, cyclin D1 expression and its subcellular localization correlate directly with distinct physiological states of Schwann cells in this animal model of CMT1A.


Asunto(s)
División Celular/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Ciclina D1/metabolismo , Proteínas de la Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/patología , Compartimento Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Ciclina D1/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Histonas/metabolismo , Proteínas de la Mielina/genética , Fibras Nerviosas Mielínicas/patología , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Ratas , Células de Schwann/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA