Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Genet ; 55(10): 1709-1720, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749246

RESUMEN

The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct ß-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasas , beta Catenina/genética , Vía de Señalización Wnt/genética , Proliferación Celular , Línea Celular Tumoral
3.
Small ; 19(49): e2302401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37559167

RESUMEN

For the past century, trypsin has been the primary method of cell dissociation, largely without any major changes to the process. Enzymatic cell detachment strategies for large-scale cell culturing processes are popular but can be labor-intensive, potentially lead to the accumulation of genetic mutations, and produce large quantities of liquid waste. Therefore, engineering surfaces to lower cell adhesion strength could enable the next generation of cell culture surfaces for delicate primary cells and automated, high-throughput workflows. In this study, a process for creating microtextured polystyrene (PS) surfaces to measure the impact of microposts on the adhesion strength of cells is developed. Cell viability and proliferation assays show comparable results in two cancer cell lines between micropost surfaces and standard cell culture vessels. However, cell image analysis on microposts reveals that cell area decreases by half, and leads to an average twofold increase in cell length per area. Using a microfluidic-based method up to a seven times greater percentage of cells are removed from micropost surfaces than the flat control surfaces. These results show that micropost surfaces enable decreased cell adhesion strength while maintaining similar cell viabilities and proliferation as compared to flat PS surfaces.


Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias , Adhesión Celular , Células Cultivadas , Fenómenos Físicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA