Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633190

RESUMEN

Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs. Their sperm is negatively buoyant and fertilises on the sea floor. Hydroid cnidarians undertake broadcast spawning but their sperm properties are poorly characterised. We show that Hydractinia echinata and H. symbiolongicarpus sperm chromatin possesses higher stability than somatic chromatin, with reduced accessibility to transposase Tn5 integration and to endonucleases in vitro. In contrast, nuclear dimensions are only moderately reduced in mature Hydractinia sperm. Ectopic expression of spH2B in the background of H2B.1 knockdown results in downregulation of global transcription and cell cycle arrest in embryos, without altering their nuclear density. Taken together, SPKK-containing spH2B variants act to stabilise chromatin and silence transcription in Hydractinia sperm with only limited chromatin compaction. We suggest that spH2Bs could contribute to sperm buoyancy as a reproductive adaptation.


Asunto(s)
Histonas , Hidrozoos , Animales , Masculino , Histonas/metabolismo , Cromatina/metabolismo , Hidrozoos/genética , Semen/metabolismo , Espermatozoides/metabolismo , Protaminas/metabolismo
2.
Front Vet Sci ; 9: 968753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061117

RESUMEN

The incidence of paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, has greatly increased within Europe in the last 15-20 years. However, the production impacts of this disease are poorly understood. This study firstly aimed to investigate the prevalence of rumen fluke in England and Northern Ireland (NI) by conducting an abattoir survey of dairy and beef cattle which also allowed the impact of rumen fluke on carcass weight, conformation and fat classification to be assessed. Secondly, an experiment aimed to assess the impact of C. daubneyi infection on diarrhea score, production loss and welfare in dairy heifers, while also evaluating the impacts of treating infected heifers with oxyclozanide. Rumen fluke prevalence was greater in NI than in England, with 53.8% (95% CI 51.9 - 55.9%) of the NI cattle carcases sampled being infected compared to 16.3% (95% CI 15.8 - 16.8%) and 17.9% (95% CI 17.4 - 18.4%) detected at the two abattoirs in England. However, there was no significant difference (P > 0.05) in the cold carcass weight between infected and non-infected cattle. Similarly, carcass conformation and fat classification were unaffected (P > 0.05) by the presence of rumen fluke. In the second experiment, daily live weight gain (DLWG), diarrhea score and welfare score were also unaffected (P > 0.05) by rumen fluke infection and by oxyclozanide treatment against rumen fluke. The farms in this experiment were managed to a high standard and animals had no intercurrent disease. Therefore, these findings suggest that on well-managed farms, production losses (growth rates) should not be compromised as a result of sub-clinical rumen fluke infection.

3.
Life Sci Alliance ; 4(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34135099

RESUMEN

Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.


Asunto(s)
Culicidae/parasitología , Malaria/prevención & control , Plasmodium berghei/patogenicidad , Plasmodium falciparum/patogenicidad , Esporozoítos/patogenicidad , Animales , Modelos Animales de Enfermedad , Drosophila , Células Hep G2 , Humanos , Inmunización , Masculino , Ratas , Esporozoítos/crecimiento & desarrollo
4.
Int J Parasitol ; 51(9): 693-698, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33848496

RESUMEN

We conducted a transcriptomic and small RNA analysis of infective juveniles (IJs) from three behaviourally distinct Steinernema species. Substantial variation was found in the expression of shared gene orthologues, revealing gene expression signatures that correlate with behavioural states. Ninety-seven percent of predicted microRNAs are novel to each species. Surprisingly, our data provide evidence of a new family of non-coding transcripts that overlap with neuropeptide gene loci, which are predicted to influence microRNA regulation of neuropeptide genes. These data suggest that differences in neuropeptide gene expression, isoform variation, and small RNA interactions could contribute to behavioural differences within the Steinernema genus.


Asunto(s)
Conducta de Búsqueda de Hospedador , MicroARNs , Neuropéptidos , Rabdítidos , Animales , MicroARNs/genética , Neuropéptidos/genética , Transcriptoma
5.
NPJ Vaccines ; 6(1): 46, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795695

RESUMEN

Malaria continues to be a pressing global health issue, causing nearly half a million deaths per year. An effective malaria vaccine could radically improve our ability to control and eliminate this pathogen. The most advanced malaria vaccine, RTS,S, confers only 30% protective efficacy under field conditions, and hence the search continues for improved vaccines. New antigens and formulations are always first developed at a pre-clinical level. This paper describes the development of a platform to supplement existing tools of pre-clinical malaria vaccine development, by displaying linear peptides on a virus-like particle (VLP). Peptides from PfCSP, particularly from outside the normal target of neutralizing antibodies, the central NANP repeat region, are screened for evidence of protective efficacy. One peptide, recently identified as a target of potent neutralizing antibodies and lying at the junction between the N-terminal domain and the central repeat region of PfCSP, is found to confer protective efficacy against malaria sporozoite challenge in mice when presented on the Qß VLP. The platform is also used to explore the effects of increasing numbers of NANP unit repeats, and including a universal CD4+ T-cell epitope from tetanus toxin, on immunogenicity and protective efficacy. The VLP-peptide platform is shown to be of use in screening malaria peptides for protective efficacy and answering basic vaccinology questions in a pre-clinical setting.

6.
Mol Cell Proteomics ; 20: 100055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581320

RESUMEN

Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.


Asunto(s)
Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Paramphistomatidae/genética , Paramphistomatidae/metabolismo , Animales , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Antígenos Helmínticos/metabolismo , Bovinos , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Heces/parasitología , Proteínas del Helminto/inmunología , Estadios del Ciclo de Vida , Paramphistomatidae/crecimiento & desarrollo , Rumen/parasitología , Secretoma , Transcriptoma , Infecciones por Trematodos/diagnóstico , Infecciones por Trematodos/inmunología , Infecciones por Trematodos/parasitología
8.
NPJ Vaccines ; 5: 92, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083027

RESUMEN

Malaria remains one of the world's most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qß) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qß VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qß. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.

9.
Vaccine ; 38(27): 4346-4354, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402755

RESUMEN

Vivax malaria is a major cause of morbidity and mortality worldwide, with several million clinical cases per year and 2.5 billion at risk of infection. A vaccine is urgently needed but the most advanced malaria vaccine, VMP001, confers only very low levels of protection against vivax malaria challenge in humans. VMP001 is based on the circumsporozoite protein (CSP) of Plasmodium vivax. Here a virus-like particle, Qß, is used as a platform to generate very high levels of antibody against peptides from PvCSP in mice, in order to answer questions important to further development of P. vivax CSP (PvCSP) vaccines. Minimal peptides from the VK210 and VK247 allelic variants of PvCSP are found to be highly protective as Qß-peptide vaccines, using transgenic P. berghei parasites expressing the homologous PvCSP allelic variant. A target of neutralising antibodies within the nonamer unit repeat of VK210, AGDR, is found, as a Qß-peptide vaccine, to provide partial protection against malaria challenge, and enhances protective efficacy when combined with full-length PvCSP vaccination. A truncated form of PvCSP, missing the N-terminal domain, is found to confer much higher levels of protective efficacy than full-length PvCSP. Peptides derived from highly conserved areas of PvCSP, RI and RII, are found not to confer protective efficacy as Qß-peptide vaccines.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Malaria , Animales , Anticuerpos Antiprotozoarios , Malaria Vivax/prevención & control , Ratones , Péptidos , Plasmodium vivax , Proteínas Protozoarias/genética
10.
Hepatology ; 71(3): 794-807, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31400152

RESUMEN

BACKGROUND AND AIMS: The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS: Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS: A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.


Asunto(s)
Hepacivirus/inmunología , Vacunación , Vacunas contra Hepatitis Viral/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Epítopos de Linfocito T , Interferón gamma/sangre , Masculino , Ratas , Ratas Sprague-Dawley , Vacunas Sintéticas/inmunología , Proteínas no Estructurales Virales/inmunología
11.
PLoS One ; 14(1): e0209028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625136

RESUMEN

Malaria remains one the world's most deadly infectious diseases, with almost half a million deaths and over 150 million clinical cases each year. An effective vaccine would contribute enormously to malaria control and will almost certainly be required for eventual eradication of the disease. However, the leading malaria vaccine candidate, RTS,S, shows only 30-50% efficacy under field conditions, making it less cost-effective than long-lasting insecticide treated bed nets. Other subunit malaria vaccine candidates, including TRAP-based vaccines, show no better protective efficacy. This has led to increased interest in combining subunit malaria vaccines as a means of enhancing protective efficacy. Mathematical models of the effect of combining such vaccines on protective efficacy can help inform optimal vaccine strategies and decision-making at all stages of the clinical process. So far, however, no such model has been developed for pre-clinical murine studies, the stage at which all candidate antigens and combinations begin evaluation. To address this gap, this paper develops a mathematical model of vaccine combination adapted to murine malaria studies. The model is based on simple probabilistic assumptions which put the model on a firmer theoretical footing than previous clinical models, which rather than deriving a relationship between immune responses and protective efficacy posit the relationship to be either exponential or Hill curves. Data from pre-clinical murine malaria studies are used to derive values for unknowns in the model which in turn allows simulations of vaccine combination efficacy and suggests optimal strategies to pursue. Finally, the ability of the model to shed light on fundamental biological variables of murine malaria such as the blood stage growth rate and sporozoite infectivity is explored.


Asunto(s)
Malaria/prevención & control , Modelos Teóricos , Animales , Femenino , Vacunas contra la Malaria/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Protozoarias/metabolismo
12.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986894

RESUMEN

Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adenoviridae/genética , Adyuvantes Inmunológicos , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Femenino , Vectores Genéticos , Malaria Vivax/inmunología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Polisorbatos/administración & dosificación , Proteínas Protozoarias/administración & dosificación , Saponinas/administración & dosificación , Escualeno/administración & dosificación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Virus Vaccinia/genética
13.
Vaccines (Basel) ; 5(4)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28953265

RESUMEN

Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end, we formulated the circumsporozoite protein (CSP) of P. vivax in MCT and compared the induced immune responses to CSP formulated in PBS or Alum. Both MCT and Alum strongly increased immunogenicity of CSP compared to PBS in both C57BL/6 and BALB/c mice. Challenge studies in mice using a chimeric P. bergei expressing CSP of P. vivax demonstrated clinically improved symptoms of malaria with CSP formulated in both MCT and Alum; protection was, however, more pronounced if CSP was formulated in MCT. Hence, MCT may be an attractive biodegradable adjuvant useful for the development of novel prophylactic vaccines.

14.
Sci Rep ; 7: 46482, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28417968

RESUMEN

Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax/inmunología , Proteínas Protozoarias , Vacunación , Animales , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/farmacología , Malaria Vivax/genética , Malaria Vivax/inmunología , Malaria Vivax/patología , Malaria Vivax/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/farmacología
15.
Infect Immun ; 84(3): 622-34, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26667840

RESUMEN

The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria.


Asunto(s)
Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/inmunología , Femenino , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Vacunas contra la Malaria/genética , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Virus Vaccinia/genética , Virus Vaccinia/metabolismo
16.
Hum Mol Genet ; 24(22): 6350-60, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26345448

RESUMEN

Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Flavinas/metabolismo , NADH Deshidrogenasa/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Unión Proteica , Subunidades de Proteína , Yarrowia/genética
17.
Int J Parasitol ; 45(11): 673-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149642

RESUMEN

The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.


Asunto(s)
Ascaris suum/genética , Regulación de la Expresión Génica , Interferencia de ARN , Animales
18.
Biochem Soc Trans ; 39(2): 694-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428964

RESUMEN

Since their identification over 15 years ago, the IQGAP (IQ-motif-containing GTPase-activating protein) family of proteins have been implicated in a wide range of cellular processes, including cytoskeletal reorganization, cell-cell adhesion, cytokinesis and apoptosis. These processes rely on protein-protein interactions, and understanding these (and how they influence one another) is critical in determining how the IQGAPs function. A key group of interactions is with calmodulin and the structurally related proteins myosin essential light chain and S100B. These interactions occur primarily through a series of IQ motifs, which are α-helical segments of the protein located towards the middle of the primary sequence. The three human IQGAP isoforms (IQGAP1, IQGAP2 and IQGAP3) all have four IQ motifs. However, these have different affinities for calmodulin, myosin light chain and S100B. Whereas all four IQ motifs of IQGAP1 interact with calmodulin in the presence of calcium, only the last two do so in the absence of calcium. IQ1 (the first IQ motif) interacts with the myosin essential light chain Mlc1sa and the first two undergo a calcium-dependent interaction with S100B. The significance of the interaction between Mlc1sa and IQGAP1 in mammals is unknown. However, a similar interaction involving the Saccharomyces cerevisiae IQGAP-like protein Iqg1p is involved in cytokinesis, leading to speculation that there may be a similar role in mammals.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Enfermedad/etiología , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Activadoras de ras GTPasa/química
19.
Biosci Rep ; 31(5): 371-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21299499

RESUMEN

The IQGAP [IQ-motif-containing GAP (GTPase-activating protein)] family members are eukaryotic proteins that act at the interface between cellular signalling and the cytoskeleton. As such they collect numerous inputs from a variety of signalling pathways. A key binding partner is the calcium-sensing protein CaM (calmodulin). This protein binds mainly through a series of IQ-motifs which are located towards the middle of the primary sequence of the IQGAPs. In some IQGAPs, these motifs also provide binding sites for CaM-like proteins such as myosin essential light chain and S100B. Using synthetic peptides and native gel electrophoresis, the binding properties of the IQ-motifs from human IQGAP2 and IQGAP3 have been mapped. The second and third IQ-motifs in IQGAP2 and all four of the IQ-motifs of IQGAP3 interacted with CaM in the presence of calcium ions. However, there were differences in the type of interaction: while some IQ-motifs were able to form complexes with CaM which were stable under the conditions of the experiment, others formed more transient interactions. The first IQ-motifs from IQGAP2 and IQGAP3 formed transient interactions with CaM in the absence of calcium and the first motif from IQGAP3 formed a transient interaction with the myosin essential light chain Mlc1sa. None of these IQ-motifs interacted with S100B. Molecular modelling suggested that all of the IQ-motifs, except the first one from IQGAP2 formed α-helices in solution. These results extend our knowledge of the selectivity of IQ-motifs for CaM and related proteins.


Asunto(s)
Calmodulina/química , Proteínas Activadoras de GTPasa/química , Cadenas Ligeras de Miosina/química , Proteínas Activadoras de ras GTPasa/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Escherichia coli , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...