Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 382: 129077, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37088428

RESUMEN

Free sugars from fruit wastes were evaluated for the production of poly(3-hydroxybutyrate) (PHB) in Paraburkholderia sacchari fed-batch bioreactor fermentations. Different initial sugar concentration, carbon to inorganic phosphorus (C/IP) ratio, IP addition during feeding and volumetric oxygen transfer coefficient (kLa) were evaluated to promote PHB production. The highest intracellular PHB accumulation (66.6%), PHB concentration (108.3 g/L), productivity (3.28 g/(L·h)) and yield (0.33 g/g) were achieved at 40 g/L initial sugars, C/IP 26.5, 202.6 h-1kLa value and 20% IP supplementation in the feeding solution. The effect of different microbial mass harvesting time on PHB properties showed no influence in weight average molecular weight and thermal properties. The harvest time influenced the tensile strength that was reduced from 28.7 MPa at 22 h to 13.3 MPa at 36 h. The elongation at break and Young's modulus were in the range 3.6-14.8% and 830-2000 MPa, respectively.


Asunto(s)
Frutas , Hidroxibutiratos , Fermentación , Ácido 3-Hidroxibutírico , Frutas/metabolismo , Azúcares , Poliésteres/metabolismo , Carbono
2.
Sci Rep ; 12(1): 6935, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484184

RESUMEN

This study presents the valorization of side streams from the sunflower-based biodiesel industry for the production of bio-based and biodegradable food packaging following circular economy principles. Bacterial cellulose (BC) was produced via fermentation in 6 L static tray bioreactors using nutrient-rich supplements derived from the enzymatic hydrolysis of sunflower meal (SFM) combined with crude glycerol as carbon source. Novel biofilms were produced using either matrices of protein isolates extracted from sunflower meal (SFMPI) alone or SFMPI matrices reinforced with nanocellulose biofillers of commercial or bacterial origin. Acid hydrolysis was employed for ex-situ modification of BC to nanostructures (56 nm). The biofilms reinforced with bacterial nanocellulose structures (SFMPI-BNC) showed 64.5% higher tensile strength, 75.5% higher Young's modulus, 131.5% higher elongation at break, 32.5% lower water solubility and 14.1% lower water vapor permeability than the biofilms produced only with SFMPI. The biofilms were evaluated on fresh strawberries packaging showing that the SFMPI-BNC-based films lead to effective preservation at 10 °C considering microbial growth and physicochemical profile (weight loss, chemical characterization, color, firmness and respiration activity). The SFMPI-BNC-based films could be applied in fresh fruit packaging applications.


Asunto(s)
Embalaje de Alimentos , Helianthus , Celulosa/química , Frutas , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA