Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Transl Exerc Biomed ; 1(1): 9-22, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38660119

RESUMEN

Objectives: 'OMICs encapsulates study of scaled data acquisition, at the levels of DNA, RNA, protein, and metabolite species. The broad objectives of OMICs in biomedical exercise research are multifarious, but commonly relate to biomarker development and understanding features of exercise adaptation in health, ageing and metabolic diseases. Methods: This field is one of exponential technical (i.e., depth of feature coverage) and scientific (i.e., in health, metabolic conditions and ageing, multi-OMICs) progress adopting targeted and untargeted approaches. Results: Key findings in exercise biomedicine have led to the identification of OMIC features linking to heritability or adaptive responses to exercise e.g., the forging of GWAS/proteome/metabolome links to cardiovascular fitness and metabolic health adaptations. The recent addition of stable isotope tracing to proteomics ('dynamic proteomics') and metabolomics ('fluxomics') represents the next phase of state-of-the-art in 'OMICS. Conclusions: These methods overcome limitations associated with point-in-time 'OMICs and can be achieved using substrate-specific tracers or deuterium oxide (D2O), depending on the question; these methods could help identify how individual protein turnover and metabolite flux may explain exercise responses. We contend application of these methods will shed new light in translational exercise biomedicine.

2.
J Cachexia Sarcopenia Muscle ; 15(2): 603-614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343303

RESUMEN

BACKGROUND: Bed-rest (BR) of only a few days duration reduces muscle protein synthesis and induces skeletal muscle atrophy and insulin resistance, but the scale and juxtaposition of these events have not been investigated concurrently in the same individuals. Moreover, the impact of short-term exercise-supplemented remobilization (ESR) on muscle volume, protein turnover and leg glucose uptake (LGU) in humans is unknown. METHODS: Ten healthy males (24 ± 1 years, body mass index 22.7 ± 0.6 kg/m2) underwent 3 days of BR, followed immediately by 3 days of ESR consisting of 5 × 30 maximal voluntary single-leg isokinetic knee extensions at 90°/s each day. An isoenergetic diet was maintained throughout the study (30% fat, 15% protein and 55% carbohydrate). Resting LGU was calculated from arterialized-venous versus venous difference across the leg and leg blood flow during the steady-state of a 3-h hyperinsulinaemic-euglycaemic clamp (60 mU/m2/min) measured before BR, after BR and after remobilization. Glycogen content was measured in vastus lateralis muscle biopsy samples obtained before and after each clamp. Leg muscle volume (LMV) was measured using magnetic resonance imaging before BR, after BR and after remobilization. Cumulative myofibrillar protein fractional synthetic rate (FSR) and whole-body muscle protein breakdown (MPB) were measured over the course of BR and remobilization using deuterium oxide and 3-methylhistidine stable isotope tracers that were administered orally. RESULTS: Compared with before BR, there was a 45% decline in insulin-stimulated LGU (P < 0.05) after BR, which was paralleled by a reduction in insulin-stimulated leg blood flow (P < 0.01) and removal of insulin-stimulated muscle glycogen storage. These events were accompanied by a 43% reduction in myofibrillar protein FSR (P < 0.05) and a 2.5% decrease in LMV (P < 0.01) during BR, along with a 30% decline in whole-body MPB after 2 days of BR (P < 0.05). Myofibrillar protein FSR and LMV were restored by 3 days of ESR (P < 0.01 and P < 0.01, respectively) but not by ambulation alone. However, insulin-stimulated LGU and muscle glycogen storage were not restored by ESR. CONCLUSIONS: Three days of BR caused concurrent reductions in LMV, myofibrillar protein FSR, myofibrillar protein breakdown and insulin-stimulated LGU, leg blood flow and muscle glycogen storage in healthy, young volunteers. Resistance ESR restored LMV and myofibrillar protein FSR, but LGU and muscle glycogen storage remained depressed, highlighting divergences in muscle fuel and protein metabolism. Furthermore, ambulation alone did not restore LMV and myofibrillar protein FSR in the non-exercised contralateral limb, emphasizing the importance of exercise rehabilitation following even short-term BR.


Asunto(s)
Glucosa , Músculo Esquelético , Masculino , Humanos , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucógeno/metabolismo , Proteínas Musculares/metabolismo
3.
Geroscience ; 46(3): 3249-3261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38238546

RESUMEN

Although muscle atrophy may partially account for age-related strength decline, it is further influenced by alterations of neural input to muscle. Persistent inward currents (PIC) and the level of common synaptic inputs to motoneurons influence neuromuscular function. However, these have not yet been described in the aged human quadriceps. High-density surface electromyography (HDsEMG) signals were collected from the vastus lateralis of 15 young (mean ± SD, 23 ± 5 y) and 15 older (67 ± 9 y) men during submaximal sustained and 20-s ramped contractions. HDsEMG signals were decomposed to identify individual motor unit discharges, from which PIC amplitude and intramuscular coherence were estimated. Older participants produced significantly lower knee extensor torque (p < 0.001) and poorer force tracking ability (p < 0.001) than young. Older participants also had lower PIC amplitude (p = 0.001) and coherence estimates in the alpha frequency band (p < 0.001) during ramp contractions when compared to young. Persistent inward currents and common synaptic inputs are lower in the vastus lateralis of older males when compared to young. These data highlight altered neural input to the clinically and functionally important quadriceps, further underpinning age-related loss of function which may occur independently of the loss of muscle mass.


Asunto(s)
Articulación de la Rodilla , Músculo Cuádriceps , Humanos , Masculino , Anciano , Músculo Cuádriceps/fisiología , Electromiografía , Articulación de la Rodilla/fisiología , Neuronas Motoras
4.
Nat Commun ; 14(1): 8345, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102152

RESUMEN

Bioenergetic failure caused by impaired utilisation of glucose and fatty acids contributes to organ dysfunction across multiple tissues in critical illness. Ketone bodies may form an alternative substrate source, but the feasibility and safety of inducing a ketogenic state in physiologically unstable patients is not known. Twenty-nine mechanically ventilated adults with multi-organ failure managed on intensive care units were randomised (Ketogenic n = 14, Control n = 15) into a two-centre pilot open-label trial of ketogenic versus standard enteral feeding. The primary endpoints were assessment of feasibility and safety, recruitment and retention rates and achievement of ketosis and glucose control. Ketogenic feeding was feasible, safe, well tolerated and resulted in ketosis in all patients in the intervention group, with a refusal rate of 4.1% and 82.8% retention. Patients who received ketogenic feeding had fewer hypoglycaemic events (0.0% vs. 1.6%), required less exogenous international units of insulin (0 (Interquartile range 0-16) vs.78 (Interquartile range 0-412) but had slightly more daily episodes of diarrhoea (53.5% vs. 42.9%) over the trial period. Ketogenic feeding was feasible and may be an intervention for addressing bioenergetic failure in critically ill patients. Clinical Trials.gov registration: NCT04101071.


Asunto(s)
Enfermedad Crítica , Cetosis , Adulto , Humanos , Proyectos Piloto , Unidades de Cuidados Intensivos , Cuerpos Cetónicos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38110544

RESUMEN

BACKGROUND: Surgery for urological cancers is associated with high complication rates and survivors commonly experience fatigue, reduced physical ability and quality of life. High-intensity interval training (HIIT) as surgical prehabilitation has been proven effective for improving the cardiorespiratory fitness (CRF) of urological cancer patients, however the mechanistic basis of this favourable adaptation is undefined. Thus, we aimed to assess the mechanisms of physiological responses to HIIT as surgical prehabilitation for urological cancer. METHODS: Nineteen male patients scheduled for major urological surgery were randomised to complete 4-weeks HIIT prehabilitation (71.6 ± 0.75 years, BMI: 27.7 ± 0.9 kg·m2) or a no-intervention control (71.8 ± 1.1 years, BMI: 26.9 ± 1.3 kg·m2). Before and after the intervention period, patients underwent m. vastus lateralis biopsies to quantify the impact of HIIT on mitochondrial oxidative phosphorylation (OXPHOS) capacity, cumulative myofibrillar muscle protein synthesis (MPS) and anabolic, catabolic and insulin-related signalling. RESULTS: OXPHOS capacity increased with HIIT, with increased expression of electron transport chain protein complexes (C)-II (p = 0.010) and III (p = 0.045); and a significant correlation between changes in C-I (r = 0.80, p = 0.003), C-IV (r = 0.75, p = 0.008) and C-V (r = 0.61, p = 0.046) and changes in CRF. Neither MPS (1.81 ± 0.12 to 2.04 ± 0.14%·day-1, p = 0.39) nor anabolic or catabolic proteins were upregulated by HIIT (p > 0.05). There was, however, an increase in phosphorylation of AS160Thr642 (p = 0.046) post-HIIT. CONCLUSIONS: A HIIT surgical prehabilitation regime, which improved the CRF of urological cancer patients, enhanced capacity for skeletal muscle OXPHOS; offering potential mechanistic explanation for this favourable adaptation. HIIT did not stimulate MPS, synonymous with the observed lack of hypertrophy. Larger trials pairing patient-centred and clinical endpoints with mechanistic investigations are required to determine the broader impacts of HIIT prehabilitation in this cohort, and to inform on future optimisation (i.e., to increase muscle mass).

6.
J Physiol ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856286

RESUMEN

Impairments in myofibrillar protein synthesis (MyoPS) during bed rest accelerate skeletal muscle loss in older adults, increasing the risk of adverse secondary health outcomes. We investigated the effect of prior resistance exercise (RE) on MyoPS and muscle morphology during a disuse event in 10 healthy older men (65-80 years). Participants completed a single bout of unilateral leg RE the evening prior to 5 days of in-patient bed-rest. Quadriceps cross-sectional area (CSA) was determined prior to and following bed-rest. Serial muscle biopsies and dual stable isotope tracers were used to determine rates of integrated MyoPS (iMyoPS) over a 7 day habitual 'free-living' phase and the bed-rest phase, and rates of acute postabsorptive and postprandial MyoPS (aMyoPS) at the end of bed rest. Quadriceps CSA at 40%, 60% and 80% of muscle length significantly decreased in exercised (EX) and non-exercised control (CTL) legs with bed-rest. The decline in quadriceps CSA at 40% and 60% of muscle length was attenuated in EX compared with CTL. During bed-rest, iMyoPS rates decreased from habitual values in CTL, but not EX, and were significantly different between legs. Postprandial aMyoPS rates increased above postabsorptive values in EX only. The change in iMyoPS over bed-rest correlated with the change in quadriceps CSA in CTL, but not EX. A single bout of RE attenuated the decline in iMyoPS rates and quadriceps atrophy with 5 days of bed-rest in older men. Further work is required to understand the functional and clinical implications of prior RE in older patient populations. KEY POINTS: Age-related skeletal muscle deterioration, linked to numerous adverse health outcomes, is driven by impairments in muscle protein synthesis that are accelerated during periods of disuse. Resistance exercise can stimulate muscle protein synthesis over several days of recovery and therefore could counteract impairments in this process that occur in the early phase of disuse. In the present study, we demonstrate that the decline in myofibrillar protein synthesis and muscle atrophy over 5 days of bed-rest in older men was attenuated by a single bout of unilateral resistance exercise performed the evening prior to bed-rest. These findings suggest that concise resistance exercise intervention holds the potential to support muscle mass retention in older individuals during short-term disuse, with implications for delaying sarcopenia progression in ageing populations.

8.
Sports Med Open ; 9(1): 97, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874413

RESUMEN

BACKGROUND: Estrogen and progesterone are the primary female sex hormones and have net excitatory and inhibitory effects, respectively, on neuronal function. Fluctuating concentrations across the menstrual cycle has led to several lines of research in relation to neuromuscular function and performance; however evidence from animal and cell culture models has yet to be demonstrated in human motor units coupled with quantification of circulating hormones. Intramuscular electromyography was used to record motor unit potentials and corresponding motor unit potential trains from the vastus lateralis of nine eumenorrheic females during the early follicular, ovulation and mid luteal phases of the menstrual cycle, alongside assessments of neuromuscular performance. Multi-level regression models were applied to explore effects of time and of contraction level. Statistical significance was accepted as p < 0.05. RESULTS: Knee extensor maximum voluntary contraction, jump power, force steadiness, and balance did not differ across the menstrual phases (all p > 0.4). Firing rate of low threshold motor units (10% maximum voluntary contraction) was lower during the ovulation and mid luteal phases (ß = - 0.82 Hz, p < 0.001), with no difference in motor unit potentials analysed from 25% maximum voluntary contraction contractions. Motor unit potentials were more complex during ovulation and mid luteal phase (p < 0.03), with no change in neuromuscular junction transmission instability (p > 0.3). CONCLUSIONS: Assessments of neuromuscular performance did not differ across the menstrual cycle. The suppression of low threshold motor unit firing rate during periods of increased progesterone may suggest a potential inhibitory effect and an alteration of recruitment strategy; however this had no discernible effect on performance. These findings highlight contraction level-dependent modulation of vastus lateralis motor unit function over the eumenorrheic cycle, occurring independently of measures of performance.

9.
J Cachexia Sarcopenia Muscle ; 14(6): 2613-2622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37722921

RESUMEN

BACKGROUND: Age-related muscle decline (sarcopenia) associates with numerous health risk factors and poor quality of life. Drugs that counter sarcopenia without harmful side effects are lacking, and repurposing existing pharmaceuticals could expedite realistic clinical options. Recent studies suggest bisphosphonates promote muscle health; however, the efficacy of bisphosphonates as an anti-sarcopenic therapy is currently unclear. METHODS: Using Caenorhabditis elegans as a sarcopenia model, we treated animals with 100 nM, 1, 10, 100 and 500 µM zoledronic acid (ZA) and assessed lifespan and healthspan (movement rates) using a microfluidic chip device. The effects of ZA on sarcopenia were examined using GFP-tagged myofibres or mitochondria at days 0, 4 and 6 post-adulthood. Mechanisms of ZA-mediated healthspan extension were determined using combined ZA and targeted RNAi gene knockdown across the life-course. RESULTS: We found 100 nM and 1 µM ZA increased lifespan (P < 0.001) and healthspan [954 ± 53 (100 nM) and 963 ± 48 (1 µM) vs. 834 ± 59% (untreated) population activity AUC, P < 0.05]. 10 µM ZA shortened lifespan (P < 0.0001) but not healthspan (758.9 ± 37 vs. 834 ± 59, P > 0.05), whereas 100 and 500 µM ZA were larval lethal. ZA (1 µM) significantly improved myofibrillar structure on days 4 and 6 post-adulthood (83 and 71% well-organized myofibres, respectively, vs. 56 and 34% controls, P < 0.0001) and increased well-networked mitochondria at day 6 (47 vs. 16% in controls, P < 0.01). Genes required for ZA-mediated healthspan extension included fdps-1/FDPS-1 (278 ± 9 vs. 894 ± 17% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, respectively, P < 0.0001), daf-16/FOXO (680 ± 16 vs. 894 ± 17%, P < 0.01) and agxt-2/BAIBA (531 ± 23 vs. 552 ± 8%, P > 0.05). Life/healthspan was extended through knockdown of igdb-1/FNDC5 (635 ± 10 vs. 523 ± 10% population activity AUC in gene knockdown vs. untreated controls, P < 0.01) and sir-2.3/SIRT-4 (586 ± 10 vs. 523 ± 10%, P < 0.05), with no synergistic improvements in ZA co-treatment vs. knockdown alone [651 ± 12 vs. 635 ± 10% (igdb-1/FNDC5) and 583 ± 9 vs. 586 ± 10% (sir-2.3/SIRT-4), both P > 0.05]. Conversely, let-756/FGF21 and sir-2.2/SIRT-4 were dispensable for ZA-induced healthspan [630 ± 6 vs. 523 ± 10% population activity AUC in knockdown + 1 µM ZA vs. untreated controls, P < 0.01 (let-756/FGF21) and 568 ± 9 vs. 523 ± 10%, P < 0.05 (sir-2.2/SIRT-4)]. CONCLUSIONS: Despite lacking an endoskeleton, ZA delays Caenorhabditis elegans sarcopenia, which translates to improved neuromuscular function across the life course. Bisphosphonates might, therefore, be an immediately exploitable anti-sarcopenia therapy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sarcopenia , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Calidad de Vida , Músculos
10.
Sports Med Open ; 9(1): 85, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725246

RESUMEN

BACKGROUND: Circulating biomarkers of bone formation and resorption are widely used in exercise metabolism research, but their responses to exercise are not clear. This study aimed to quantify group responses and inter-individual variability of P1NP and ß-CTX-1 after prolonged, continuous running (60-120 min at 65-75% V̇O2max) in young healthy adult males using individual participant data (IPD) meta-analysis. METHODS: The protocol was designed following PRISMA-IPD guidelines and was pre-registered on the Open Science Framework prior to implementation ( https://osf.io/y69nd ). Changes in P1NP and ß-CTX-1 relative to baseline were measured during, immediately after, and in the hours and days following exercise. Typical hourly and daily variations were estimated from P1NP and ß-CTX-1 changes relative to baseline in non-exercise (control) conditions. Group responses and inter-individual variability were quantified with estimates of the mean and standard deviation of the difference, and the proportion of participants exhibiting an increased response. Models were conducted within a Bayesian framework with random intercepts to account for systematic variation across studies. RESULTS: P1NP levels increased during and immediately after running, when the proportion of response was close to 100% (75% CrI: 99 to 100%). P1NP levels returned to baseline levels within 1 h and over the next 4 days, showing comparable mean and standard deviation of the difference with typical hourly (0.1 ± 7.6 ng·mL-1) and daily (- 0.4 ± 5.7 ng·mL-1) variation values. ß-CTX-1 levels decreased during and up to 4 h after running with distributions comparable to typical hourly variation (- 0.13 ± 0.11 ng·mL-1). There was no evidence of changes in ß-CTX-1 levels during the 4 days after the running bout, when distributions were also similar between the running data and typical daily variation (- 0.03 ± 0.10 ng·mL-1). CONCLUSION: Transient increases in P1NP were likely biological artefacts (e.g., connective tissue leakage) and not reflective of bone formation. Comparable small decreases in ß-CTX-1 identified in both control and running data, suggested that these changes were due to the markers' circadian rhythm and not the running intervention. Hence, prolonged continuous treadmill running did not elicit bone responses, as determined by P1NP and ß-CTX-1, in this population.

11.
Clin Nutr ; 42(10): 1849-1865, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625315

RESUMEN

Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.


Asunto(s)
Proteínas en la Dieta , Músculo Esquelético , Humanos , Leucina/metabolismo , Proteínas en la Dieta/metabolismo , Músculo Esquelético/metabolismo , Aminoácidos Esenciales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , Envejecimiento/metabolismo , Proteínas Musculares/metabolismo
12.
Aging Clin Exp Res ; 35(10): 2271-2275, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37466861

RESUMEN

BACKGROUND: Sarcopenia is the progressive loss of muscle mass and function with age. A number of different sarcopenia definitions have been proposed and utilised in research. This study aimed to investigate how the prevalence of sarcopenia in a research cohort of older adults is influenced by the use of independent aspects of these different definitions. METHODS: Data from 255 research participants were compiled. Defining criteria by the European Working Group on Sarcopenia in Older People, the International Working Group on Sarcopenia (IWGS), and the Foundation for the National Institutes of Health were applied. RESULTS: Prevalence of sarcopenia using muscle mass ranged from 4 to 22%. Gait speed and handgrip strength criteria identified 4-34% and 4-16% of participants as sarcopenic, respectively. CONCLUSION: Prevalence of sarcopenia differs substantially depending on the criteria used. Work is required to address the impact of this for sarcopenia research to be usefully translated to inform on clinical practice.


Asunto(s)
Sarcopenia , Humanos , Anciano , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Fuerza de la Mano/fisiología , Prevalencia , Velocidad al Caminar
13.
Trials ; 24(1): 401, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312095

RESUMEN

BACKGROUND: The decline in skeletal muscle mass experienced following a short-term period (days to weeks) of muscle disuse is mediated by impaired rates of muscle protein synthesis (MPS). Previous RCTs of exercise or nutrition prehabilitation interventions designed to mitigate disuse-induced muscle atrophy have reported limited efficacy. Hence, the aim of this study is to investigate the impact of a complex prehabilitation intervention that combines ß-lactoglobulin (a novel milk protein with a high leucine content) supplementation with resistance exercise training on disuse-induced changes in free-living integrated rates of MPS in healthy, young adults. METHODS/DESIGN: To address this aim, we will recruit 24 healthy young (18-45 years) males and females to conduct a parallel, double-blind, 2-arm, randomised placebo-controlled trial. The intervention group will combine a 7-day structured resistance exercise training programme with thrice daily dietary supplementation with 23 g of ß-lactoglobulin. The placebo group will combine the same training programme with an energy-matched carbohydrate (dextrose) control. The study protocol will last 16 days for each participant. Day 1 will be a familiarisation session and days 2-4 will be the baseline period. Days 5-11 represent the 'prehabilitation period' whereby participants will combine resistance training with their assigned dietary supplementation regimen. Days 12-16 represent the muscle disuse-induced 'immobilisation period' whereby participants will have a single leg immobilised in a brace and continue their assigned dietary supplementation regimen only (i.e. no resistance training). The primary endpoint of this study is the measurement of free-living integrated rates of MPS using deuterium oxide tracer methodology. Measurements of MPS will be calculated at baseline, over the 7-day prehabilitation period and over the 5-day immobilisation period separately. Secondary endpoints include measurements of muscle mass and strength that will be collected on days 4 (baseline), 11 (end of prehabilitation) and 16 (end of immobilisation). DISCUSSION: This novel study will establish the impact of a bimodal prehabilitation strategy that combines ß-lactoglobulin supplementation and resistance exercise training in modulating MPS following a short-term period of muscle disuse. If successful, this complex intervention may be translated to clinical practice with application to patients scheduled to undergo, for example, hip or knee replacement surgery. TRIAL REGISTRATION: NCT05496452. Registered on August 10, 2022. PROTOCOL VERSION: 16-12-2022/1.


Asunto(s)
Proteínas Musculares , Entrenamiento de Fuerza , Femenino , Masculino , Humanos , Adulto Joven , Músculos , Lactoglobulinas , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Exp Physiol ; 108(6): 827-837, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37018481

RESUMEN

NEW FINDINGS: What is the central question of this study? Conflicting evidence exists on motor unit (MU) firing rate in response to exercise-induced fatigue, possibly due to the contraction modality used: Do MU properties adapt similarly following concentric and eccentric loading? What is the main finding and its importance? MU firing rate increased following eccentric loading only despite a decline in absolute force. Force steadiness deteriorated following both loading methods. Central and peripheral MU features are altered in a contraction type-dependant manner, which is an important consideration for training interventions. ABSTRACT: Force output of muscle is partly mediated by the adjustment of motor unit (MU) firing rate (FR). Disparities in MU features in response to fatigue may be influenced by contraction type, as concentric (CON) and eccentric (ECC) contractions demand variable amounts of neural input, which alters the response to fatigue. This study aimed to determine the effects of fatigue following CON and ECC loading on MU features of the vastus lateralis (VL). High-density surface (HD-sEMG) and intramuscular (iEMG) electromyography were used to record MU potentials (MUPs) from bilateral VLs of 12 young volunteers (six females) during sustained isometric contractions at 25% and 40% of the maximum voluntary contraction (MVC), before and after completing CON and ECC weighted stepping exercise. Multi-level mixed effects linear regression models were performed with significance assumed as P < 0.05. MVC decreased in both CON and ECC legs post-exercise (P < 0.0001), as did force steadiness at both 25% and 40% MVC (P < 0.004). MU FR increased in ECC at both contraction levels (P < 0.001) but did not change in CON. FR variability increased in both legs at 25% and 40% MVC following fatigue (P < 0.01). From iEMG measures at 25% MVC, MUP shape did not change (P > 0.1) but neuromuscular junction transmission instability increased in both legs (P < 0.04), and markers of fibre membrane excitability increased following CON only (P = 0.018). These data demonstrate that central and peripheral MU features are altered following exercise-induced fatigue and differ according to exercise modality. This is important when considering interventional strategies targeting MU function.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Femenino , Humanos , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Electromiografía , Contracción Isométrica/fisiología , Fatiga Muscular/fisiología , Fatiga
15.
Trials ; 24(1): 214, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949443

RESUMEN

BACKGROUND: Stroke is a leading cause of mortality and disability, and its sequelae are associated with inadequate food intake which can lead to sarcopenia. The aim of this study is to verify the effectiveness of creatine supplementation on functional capacity, strength, and changes in muscle mass during hospitalization for stroke compared to usual care. An exploratory subanalysis will be performed to assess the inflammatory profiles of all participants, in addition to a follow-up 90 days after stroke, to verify functional capacity, muscle strength, mortality, and quality of life. METHODS: Randomized, double-blind, unicenter, parallel-group trial including individuals with ischemic stroke in the acute phase. The duration of the trial for the individual subject will be approximately 90 days, and each subject will attend a maximum of three visits. Clinical, biochemical, anthropometric, body composition, muscle strength, functional capacity, degree of dependence, and quality of life assessments will be performed. Thirty participants will be divided into two groups: intervention (patients will intake one sachet containing 10g of creatine twice a day) and control (patients will intake one sachet containing 10g of placebo [maltodextrin] twice a day). Both groups will receive supplementation with powdered milk protein serum isolate to achieve the goal of 1.5g of protein/kg of body weight/day and daily physiotherapy according to the current rehabilitation guidelines for patients with stroke. Supplementation will be offered during the 7-day hospitalization. The primary outcomes will be functional capacity, strength, and changes in muscle mass after the intervention as assessed by the Modified Rankin Scale, Timed Up and Go test, handgrip strength, 30-s chair stand test, muscle ultrasonography, electrical bioimpedance, and identification of muscle degradation markers by D3-methylhistidine. Follow-up will be performed 90 days after stroke to verify functional capacity, muscle strength, mortality, and quality of life. DISCUSSION: The older population has specific nutrient needs, especially for muscle mass and function maintenance. Considering that stroke is a potentially disabling event that can lead the affected individual to present with numerous sequelae, it is crucial to study the mechanisms of muscle mass loss and understand how adequate supplementation can help these patients to better recover. TRIAL REGISTRATION: The Brazilian Clinical Trials Registry (ReBEC) RBR-9q7gg4 . Registered on 21 January 2019.


Asunto(s)
Creatina , Accidente Cerebrovascular , Humanos , Creatina/efectos adversos , Fuerza de la Mano , Calidad de Vida , Equilibrio Postural , Estudios de Tiempo y Movimiento , Fuerza Muscular , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/tratamiento farmacológico , Suplementos Dietéticos/efectos adversos , Músculos , Método Doble Ciego , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Med Sci Sports Exerc ; 55(3): 398-408, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731005

RESUMEN

PURPOSE: Resistance exercise training (RET) attenuates age-related muscle and strength loss ("sarcopenia"). However, compared with machine-based RET, the efficacy of cost-effective, accessible elastic band RET (EB-RET) for muscle adaptive remodeling lacks supporting mechanistic evidence. METHODS: Eight young (YM; 24 ± 4 yr) and eight older (OM; 68 ± 6 yr) untrained males consumed an oral stable isotope tracer (D 2 O) combined with serial vastus lateralis muscle biopsies to measure integrated myofibrillar protein synthesis (iMyoPS) and regulatory signaling over ~48 h before (habitual) and after an acute bout of EB-RET (6 × 12 repetitions at ~70% of one-repetition maximum). iMyoPS was determined via gas chromatography-pyrolysis-isotope ratio mass spectroscopy and regulatory signaling expression by immunoblot. RESULTS: Habitual iMyoPS did not differ between YM and OM (1.62% ± 0.21% vs 1.43% ± 0.47%·d -1 , respectively, P = 0.128). There was a significant increase in iMyoPS after EB-RET in YM (2.23% ± 0.69%·d -1 , P = 0.02), but not OM (1.75% ± 0.54%·d -1 , P = 0.30). EB-RET increased the phosphorylation of key anabolic signaling proteins similarly in YM and OM at 1 h postexercise, including p-IRS-1 Ser636/639 , p-Akt Ser473 , p-4EBP-1 Thr37/46 , p-P70S6K Thr389 , and p-RPS6 Ser240/244 , whereas p-TSC2 Thr1462 and p-mTOR Ser2448 increased only in YM (all P < 0.05). There were no differences in the expression of amino acid transporters/sensors or proteolytic markers after EB-RET. CONCLUSIONS: iMyoPS was elevated after EB-RET in YM but not OM. However, the increase in acute anabolic signaling with EB-RET was largely similar between groups. In conclusion, the capacity for EB-RET to stimulate iMyoPS may be impaired in older age. Further work may be necessary to optimize prescriptive programming in YM and OM.


Asunto(s)
Entrenamiento de Fuerza , Anciano , Humanos , Masculino , Músculo Esquelético/fisiología , Fosforilación/fisiología , Biosíntesis de Proteínas , Músculo Cuádriceps/metabolismo , Entrenamiento de Fuerza/métodos , Transducción de Señal/fisiología , Adulto Joven , Adulto , Persona de Mediana Edad
17.
Exp Physiol ; 108(4): 549-553, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738267

RESUMEN

NEW FINDINGS: What is the central question of this study? Contrast-enhanced ultrasound (CEUS) can be used to directly assess skeletal muscle perfusion but its day-to-day repeatability over time has not yet been validated: is CEUS a repeatable method for the measurement of skeletal muscle microvascular blood flow (MBF) at rest and in response to exercise, across independent assessment sessions? What is the main finding and its importance? A strong agreement between CEUS MBF measures across sessions suggests it is a repeatable method for assessing skeletal muscle perfusion over time. This validation provides confidence for incorporating these measures into longitudinal studies such as a chronic intervention or disease progression to gain further knowledge of skeletal muscle microvascular function. ABSTRACT: Contrast-enhanced ultrasound (CEUS) can be used to directly assess skeletal muscle perfusion. However, its repeatability over time has not yet been validated and therefore its use in longitudinal measures (i.e., exploring the impact of a chronic intervention or disease progression) is limited. This study aimed to determine the repeatability of CEUS for the measurement of skeletal muscle microvascular blood flow (MBF) at baseline and in response to exercise, across independent assessment sessions. Ten healthy volunteers (five female; 30 ± 6 years) had CEUS of the right vastus lateralis recorded in two separate sessions, 14 days apart. Measurements were taken at baseline, during an isometric leg extension and during recovery. Acoustic intensity data from a region of interest were plotted as a replenishment curve to obtain blood volume (A) and flow velocity (ß) values from a one-phase association non-linear regression of mean tissue echogenicity. Linear regression and Bland-Altman analyses of A and ß values were performed, with significance assumed as P < 0.05. Strong positive correlations were observed across sessions for all A and ß values (both P < 0.0001). Bland-Altman analysis showed a bias (SD) of -0.013 ± 1.24 for A and -0.014 ± 0.31 for ß. A bias of 0.201 ± 0.770 at baseline, 0.527 ± 1.29 during contraction and -0.203 ± 1.29 at recovery was observed for A, and -0.0328 ± 0.0853 (baseline), -0.0446 ± 0.206 (contraction) and 0.0382 ± 0.233 (recovery) for ß. A strong agreement between CEUS MBF measures across independent sessions suggests it to be a repeatable method for assessing skeletal muscle perfusion over time, and therefore facilitates wider use in longitudinal studies.


Asunto(s)
Medios de Contraste , Músculo Esquelético , Humanos , Femenino , Microcirculación , Flujo Sanguíneo Regional/fisiología , Ultrasonografía/métodos , Músculo Esquelético/fisiología
18.
J Steroid Biochem Mol Biol ; 229: 106266, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36822332

RESUMEN

Studies in vitro have demonstrated a key molecular role for 1,25-dihydroxyvitamin D (1,25D) in skeletal muscle function, with vitamin D-deficiency (low serum 25-hydroxyvitamin D, 25D) being associated with muscle pain and weakness. Despite this, an understanding of the overall role of vitamin D in muscle health (particularly the impact of vitamin D-related genetic variants) has yet to be fully resolved, relative to more well-studied targets such as the skeleton. Thus, we aimed to review existing studies that have investigated relationships between skeletal muscle function and single nucleotide polymorphisms (SNPs) within vitamin D-related genes. A systematic review of papers published between January 2000 and June 2022 on PubMed, EMBASE and Web of Science pertaining to association between functionally relevant vitamin D receptor genetic variants and variants within genes of the vitamin D pathway and skeletal muscle function/outcomes was performed. 21 articles were included in the review for final analysis, of which 20 only studied genetic variation of the VDR gene. Of the included articles, 81 % solely included participants aged ≥ 50 years and of the 9 studies that did not only include White individuals, only 2 included Black participants. Within the vitamin D system, the VDR gene is the primary gene of which associations between polymorphisms and muscle function have been investigated. VDR polymorphisms have been significantly associated with muscle phenotypes in two or more studies. Of note A1012G was significantly associated with higher handgrip strength, but the results for other SNPs were notably variable between studies. While the lack of definitive evidence and study heterogeneity makes it difficult to draw conclusions, the findings of this review highlight a need for improvements with regards to the use of more diverse study populations, i.e., inclusion of Black individuals and other people of colour, and expanding research scope beyond the VDR gene.


Asunto(s)
Fuerza de la Mano , Receptores de Calcitriol , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Músculo Esquelético/metabolismo , Vitaminas/metabolismo , Polimorfismo de Nucleótido Simple
19.
Geroscience ; 45(1): 331-344, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35948859

RESUMEN

Exercise training can induce adaptive changes to tendon tissue both structurally and mechanically; however, the underlying compositional changes that contribute to these alterations remain uncertain in humans, particularly in the context of the ageing tendon. The aims of the present study were to determine the molecular changes with ageing in patellar tendons in humans, as well as the responses to exercise and exercise type (eccentric (ECC) and concentric (CON)) in young and old patellar tendon. Healthy younger males (age 23.5 ± 6.1 years; n = 27) and older males (age 68.5 ± 1.9 years; n = 27) undertook 8 weeks of CON or ECC training (3 times per week; at 60% of 1 repetition maximum (1RM)) or no training. Subjects consumed D2O throughout the protocol and tendon biopsies were collected after 4 and 8 weeks for measurement of fractional synthetic rates (FSR) of tendon protein synthesis and gene expression. There were increases in tendon protein synthesis following 4 weeks of CON and ECC training (P < 0.01; main effect by ANOVA), with no differences observed between young and old males, or training type. At the transcriptional level however, ECC in young adults generally induced greater responses of collagen and extracellular matrix-related genes than CON, while older individuals had reduced gene expression responses to training. Different training types did not appear to induce differential tendon responses in terms of protein synthesis, and while tendons from older adults exhibited different transcriptional responses to younger individuals, protein turnover changes with training were similar for both age groups.


Asunto(s)
Ligamento Rotuliano , Masculino , Humanos , Anciano , Adolescente , Ligamento Rotuliano/fisiología , Ejercicio Físico/fisiología , Envejecimiento
20.
Geroscience ; 45(1): 451-462, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36083436

RESUMEN

Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Anciano , Músculo Esquelético/metabolismo , Hipertrofia , Envejecimiento , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...