Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346652

RESUMEN

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Asunto(s)
COVID-19 , Quirópteros , Animales , Filogenia , Variación Genética , Análisis de Secuencia de ADN , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica
2.
Microbiol Resour Announc ; 10(49): e0088221, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34881972

RESUMEN

Enteroviruses infect humans and animals and can cause disease, and some may be transmitted across species barriers. We tested Central African wildlife and found Enterovirus RNA in primates (17) and rodents (2). Some sequences were very similar, while others were dissimilar to known species, highlighting the underexplored enterovirus diversity in wildlife.

3.
PLoS One ; 16(6): e0236971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34106949

RESUMEN

Coronaviruses play an important role as pathogens of humans and animals, and the emergence of epidemics like SARS, MERS and COVID-19 is closely linked to zoonotic transmission events primarily from wild animals. Bats have been found to be an important source of coronaviruses with some of them having the potential to infect humans, with other animals serving as intermediate or alternate hosts or reservoirs. Host diversity may be an important contributor to viral diversity and thus the potential for zoonotic events. To date, limited research has been done in Africa on this topic, in particular in the Congo Basin despite frequent contact between humans and wildlife in this region. We sampled and, using consensus coronavirus PCR-primers, tested 3,561 wild animals for coronavirus RNA. The focus was on bats (38%), rodents (38%), and primates (23%) that posed an elevated risk for contact with people, and we found coronavirus RNA in 121 animals, of which all but two were bats. Depending on the taxonomic family, bats were significantly more likely to be coronavirus RNA-positive when sampled either in the wet (Pteropodidae and Rhinolophidae) or dry season (Hipposideridae, Miniopteridae, Molossidae, and Vespertilionidae). The detected RNA sequences correspond to 15 alpha- and 6 betacoronaviruses, with some of them being very similar (>95% nucleotide identities) to known coronaviruses and others being more unique and potentially representing novel viruses. In seven of the bats, we detected RNA most closely related to sequences of the human common cold coronaviruses 229E or NL63 (>80% nucleotide identities). The findings highlight the potential for coronavirus spillover, especially in regions with a high diversity of bats and close human contact, and reinforces the need for ongoing surveillance.


Asunto(s)
Animales Salvajes/virología , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Coronavirus/aislamiento & purificación , Roedores/virología , Animales , Animales Salvajes/genética , Quirópteros/genética , Congo/epidemiología , Coronavirus/genética , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , República Democrática del Congo/epidemiología , Monitoreo del Ambiente/métodos , Filogenia , ARN Viral/genética , Roedores/genética
4.
Intervirology ; 61(4): 155-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30448834

RESUMEN

OBJECTIVE: Herpesviruses belong to a diverse order of large DNA viruses that can cause diseases in humans and animals. With the goal of gathering information about the distribution and diversity of herpesviruses in wild rodent and shrew species in central Africa, animals in Cameroon and the Democratic Republic of the Congo were sampled and tested by PCR for the presence of herpesvirus DNA. METHODS: A broad range PCRs targeting either the Polymerase or the terminase gene were used for virus detection. Amplified products from PCR were sequenced and isolates analysed for phylogenetic placement. RESULTS: Overall, samples of 1,004 animals of various rodent and shrew species were tested and 24 were found to be positive for herpesvirus DNA. Six of these samples contained strains of known viruses, while the other positive samples revealed DNA sequences putatively belonging to 11 previously undescribed herpesviruses. The new isolates are beta- and gammaherpesviruses and the shrew isolates appear to form a separate cluster within the Betaherpesvirinae subfamily. CONCLUSION: The diversity of viruses detected is higher than in similar studies in Europe and Asia. The high diversity of rodent and shrew species occurring in central Africa may be the reason for a higher diversity in herpesviruses in this area.


Asunto(s)
ADN Viral/análisis , Variación Genética , Herpesviridae/clasificación , Herpesviridae/aislamiento & purificación , Roedores/virología , Musarañas/virología , Animales , Asia , Camerún , ADN Viral/genética , República Democrática del Congo , Herpesviridae/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
5.
J Gen Virol ; 99(5): 676-681, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29583115

RESUMEN

Bocaparvoviruses are members of the family Parvovirinae and human bocaviruses have been found to be associated with respiratory and gastrointestinal disease. There are four known human bocaviruses, as well as several distinct ones in great apes. The goal of the presented study was to detect other non-human primate (NHP) bocaviruses in NHP species in the Democratic Republic of the Congo using conventional broad-range PCR. We found bocavirus DNA in blood and tissues samples in 6 out of 620 NHPs, and all isolates showed very high identity (>97 %) with human bocaviruses 2 or 3. These findings suggest cross-species transmission of bocaviruses between humans and NHPs.


Asunto(s)
ADN Viral/aislamiento & purificación , Bocavirus Humano/genética , Infecciones por Parvoviridae/veterinaria , Primates/virología , Animales , ADN Viral/sangre , República Democrática del Congo , Genoma Viral , Filogenia , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...