Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 12: 200, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733232

RESUMEN

OBJECTIVE: To investigate the efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training for treatment of cognitive symptoms in patients with Alzheimer's disease (AD). A secondary objective was to analyze associations between brain plasticity and cognitive effects of treatment. METHODS: In this randomized, sham-controlled, multicenter clinical trial, 34 patients with AD were assigned to three experimental groups receiving 30 daily sessions of combinatory intervention. Participants in the real/real group (n = 16) received 10 Hz repetitive transcranial magnetic stimulation (rTMS) delivered separately to each of six cortical regions, interleaved with computerized cognitive training. Participants in the sham rTMS group (n = 18) received sham rTMS combined with either real (sham/real group, n = 10) or sham (sham/sham group, n = 8) cognitive training. Effects of treatment on neuropsychological (primary outcome) and neurophysiological function were compared between the 3 treatment groups. These, as well as imaging measures of brain atrophy, were compared at baseline to 14 healthy controls (HC). RESULTS: At baseline, patients with AD had worse cognition, cerebral atrophy, and TMS measures of cortico-motor reactivity, excitability, and plasticity than HC. The real/real group showed significant cognitive improvement compared to the sham/sham, but not the real/sham group. TMS-induced plasticity at baseline was predictive of post-intervention changes in cognition, and was modified across treatment, in association with changes of cognition. INTERPRETATION: Combined rTMS and cognitive training may improve the cognitive status of AD patients, with TMS-induced cortical plasticity at baseline serving as predictor of therapeutic outcome for this intervention, and potential mechanism of action. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT01504958.

2.
Front Psychiatry ; 4: 124, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24109459

RESUMEN

Acetylcholinesterase inhibitors (AChEIs) are the most commonly prescribed monotherapeutic medications for Alzheimer's disease (AD). However, their underlying neurophysiological effects remain largely unknown. We investigated the effects of monotherapy (AChEI) and combination therapy (AChEI and memantine) on brain reactivity and plasticity. Patients treated with monotherapy (AChEI) (N = 7) were compared to patients receiving combination therapy (COM) (N = 9) and a group of age-matched, healthy controls (HCs) (N = 13). Cortical reactivity and plasticity of the motor cortex were examined using transcranial magnetic stimulation. Cognitive functions were assessed with the cognitive subscale of the Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), activities of daily living (ADLs) with the ADCS-ADL. In addition we assessed the degree of brain atrophy by measuring brain-scalp distances in seven different brain areas. Patient groups differed in resting motor threshold and brain atrophy, with COM showing a lower motor threshold but less atrophy than AChEI. COM showed similar plasticity effects as the HC group, while plasticity was reduced in AChEI. Long-interval intracortical inhibition (LICI) was impaired in both patient groups when compared to HC. ADAS-Cog scores were positively correlated with LICI measures and with brain atrophy, specifically in the left inferior parietal cortex. AD patients treated with mono- or combination-therapy show distinct neurophysiological patterns. Further studies should investigate whether these measures might serve as biomarkers of treatment response and whether they could guide other therapeutic interventions.

3.
Artículo en Inglés | MEDLINE | ID: mdl-22137767

RESUMEN

Amines are one class of signaling molecules used by nervous systems. In crustaceans, four amines are recognized: dopamine, histamine, octopamine, and serotonin. While much is known about the physiological actions of amines in crustaceans, little is known about them at the molecular level. Recently, we mined the Daphnia pulex genome for proteins required for histaminergic signaling. Here, we expand this investigation, mining the D. pulex genome for proteins necessary for dopamine, octopamine and serotonin signaling. Using known Drosophila protein sequences, the D. pulex database was queried for genes encoding homologs of amine biosynthetic enzymes, receptors and transporters. Among the proteins identified were the biosynthetic enzymes tryptophan-phenylalanine hydroxylase (dopamine, octopamine and serotonin), tyrosine hydroxylase (dopamine), DOPA decarboxylase (dopamine and serotonin), tyrosine decarboxylase (octopamine), tyramine ß-hydroxylase (octopamine) and tryptophan hydroxylase (serotonin), as well as receptors for each amine and several amine transporters (dopamine and serotonin). Comparisons of the Daphnia proteins with their Drosophila queries showed high sequence identity/similarity, particularly in domains required for function. The data presented in this study provide the first molecular descriptions of dopamine, octopamine and serotonin signaling systems in Daphnia, and provide foundations for future molecular, biochemical, anatomical, and physiological investigations of aminergic signaling in this species.


Asunto(s)
Daphnia/genética , Daphnia/metabolismo , Dopamina/metabolismo , Genómica , Octopamina/metabolismo , Serotonina/metabolismo , Secuencia de Aminoácidos , Animales , Daphnia/química , Dopamina/genética , Datos de Secuencia Molecular , Octopamina/genética , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Alineación de Secuencia , Serotonina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...