Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21972, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034783

RESUMEN

Gelatine is frequently used as a food ingredient. However, Indonesia imports almost all of its gelatine, totaling 3990152 tons annually. Gelatine could be replaced with glucomannan compound which was found in porang tubers. However, it also contains calcium oxalate, which is harmful for the human body. In this study, calcium oxalate was first eliminated by the purification process using 10 % NaCl (w/w). Moreover, the microwave-assisted extraction method was used to extract the glucomannan compound by applying 300 W of microwave power with different extraction times (5, 10, 15, and 20 min) and different ethanol concentrations (60, 70, 80, and 96 %). Statistical analysis was used to optimize and identify significant parameters influencing the glucomannan concentration. The best conditions for glucomannan extraction were an extraction time of 10 min and an ethanol concentration of 80 % (v/v), resulting in a glucomannan yield of ≥96 %. Machine learning was successfully applied for data modelling using a Long Short-Term Memory block with an average R-square of 0.9772 (97.72 % accuracy) and an average MSE of 4.7719. Furthermore, physical and chemical characteristics of the extracted porang flour were accorded with SNI gelatine standards 06-3735 in 1995, which consisted of glucomannan (96.359 ± 1.164 %), calcium oxalate (0.009 ± 0.001 %), water (2.290 ± 0.986 %), ash (0.018 ± 0.002 %), fat (0.0235 ± 0.120 %), heavy metals (not identified), and pH (6.455 ± 0.191). Finally, the extracted glucomannan can be used as a potential regional substitute for gelatine production.

2.
RSC Adv ; 12(47): 30742-30753, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36349150

RESUMEN

In this study, chitosan (CS) doped sulphosuccinic acid (SSA)-glycerol (Gly) and modified montmorillonite clay (MMT) were successfully fabricated. The membranes were prepared using the solution casting method. Analysis of morphology and topography using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the composite membrane with 3 wt% MMT filler, namely CS/MMT-1, possessed the most adequate surface roughness compared to the other fabricated membranes. Furthermore, mechanical characterization of the CS/MMT-1 composite membrane showed that the membrane achieved satisfactory mechanical strength with a value of 39.23 MPa. Proton conductivity of the composite membranes increased as the temperature was increased. The proton conductivity of the CS/MMT-1 composite membrane increased from 1.75 × 10-2 S cm-1 at 25 °C up to 3.57 × 10-2 S cm-1 at 80 °C. The CS/MMT-1 composite membrane also exhibited a methanol permeability value that was significantly lower than that of pristine CS, namely 1.22 × 10-7 cm2 s-1 and 12.49 × 10-7 cm2 s-1, respectively. The results of this study show that the fabricated composite membrane can be used as an alternative polymer electrolyte membrane (PEM) for DMFC applications.

3.
RSC Adv ; 12(23): 14411-14421, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35702242

RESUMEN

Nanocellulose (NC) composite membranes containing novel ternary materials including NC, imidazole (Im), and mesoporous phosphotungstic acid (m-PTA) were successfully fabricated by a phase inversion method. The single-particle size of NC was 88.79 nm with a spherical form. A m-PTA filler with a mesopore size of 4.89 nm was also successfully synthesized by a self-assembly method. Moreover, the fabricated membrane NC/Im/m-PTA-5 exhibited the best performances towards its proton conductivity and methanol permeability at 31.88 mS cm-1 and 1.74 × 10-6 cm2 s-1, respectively. The membrane selectivity was 1.83 × 104 S cm-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA