Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 12549, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532718

RESUMEN

The frequency and intensity of extreme thermal stress conditions during summer are expected to increase due to climate change. This study examines sixteen models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that have been bias-adjusted using the quantile delta mapping method. These models provide Universal Thermal Climate Index (UTCI) for summer seasons between 1979 and 2010, which are regridded to a similar spatial grid as ERA5-HEAT (available at 0.25° × 0.25° spatial resolution) using bilinear interpolation. The evaluation compares the summertime climatology and trends of the CMIP6 multi-model ensemble (MME) mean UTCI with ERA5 data, focusing on a regional hotspot in northwest India (NWI). The Pattern Correlation Coefficient (between CMIP6 models and ERA5) values exceeding 0.9 were employed to derive the MME mean of UTCI, which was subsequently used to analyze the climatology and trends of UTCI in the CMIP6 models.The spatial climatological mean of CMIP6 MME UTCI demonstrates significant thermal stress over the NWI region, similar to ERA5. Both ERA5 and CMIP6 MME UTCI show a rising trend in thermal stress conditions over NWI. The temporal variation analysis reveals that NWI experiences higher thermal stress during the summer compared to the rest of India. The number of thermal stress days is also increasing in NWI and major Indian cities according to ERA5 and CMIP6 MME. Future climate projections under different scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) indicate an increasing trend in thermal discomfort conditions throughout the twenty-first century. The projected rates of increase are approximately 0.09 °C per decade, 0.26 °C per decade, and 0.56 °C per decade, respectively. Assessing the near (2022-2059) and far (2060-2100) future, all three scenarios suggest a rise in intense heat stress days (UTCI > 38 °C) in NWI. Notably, the CMIP6 models predict that NWI could reach deadly levels of heat stress under the high-emission (SSP5-8.5) scenario. The findings underscore the urgency of addressing climate change and its potential impacts on human well-being and socio-economic sectors.

3.
Sci Rep ; 13(1): 12643, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542113

RESUMEN

The Indian summer monsoon rainfall (ISMR) exhibits significant variability, affecting the food and water security of the densely populated Indian subcontinent. The two dominant spatial modes of ISMR variability are associated with the El Niño Southern Oscillation (ENSO) and the strength of the semi-permanent monsoon trough along with related variability in monsoon depressions, respectively. Although the robust teleconnection between ENSO and ISMR has been well established for several decades, the major drivers leading to the time-varying relationship between ENSO and ISMR patterns across different regions of the country are not well understood. Our analysis shows a consistent increase from a moderate to substantially strong teleconnection strength between ENSO and ISMR from 1901 to 1940. This strengthened relationship remained stable and strong between 1941 and 1980. However, in the recent period from 1981 to 2018 the teleconnection decreased consistently again to a moderate strength. We find that the ENSO-ISMR relationship exhibits distinct regional variability with time-varying relationship over the north, central, and south India. Specifically, the teleconnection displays an increasing relationship for north India, a decreasing relationship for central India and a consistent relationship for south India. Warm SST anomalies over the eastern Pacific Ocean correspond to an overall decrease in the ISMR, while warm SST anomalies over the Indian Ocean corresponds to a decrease in rainfall over the north and increase over the south of India. The central Indian region experienced the most substantial variation in the ENSO-ISMR relationship. This variation corresponds to the variability of the monsoon trough and depressions, strongly influenced by the Pacific Decadal Oscillation and North Atlantic Oscillation, which regulate the relative dominance of the two spatial modes of ISMR. By applying the PCA-Biplot technique, our study highlights the significant impacts of various climate drivers on the two dominant spatial modes of ISMR which account for the evolving nature of the ENSO-ISMR relationship.

4.
Environ Sci Pollut Res Int ; 29(4): 6219-6236, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34448143

RESUMEN

With rising anthropogenic activities, surface ozone levels have increased across different parts of the world including India. Previous studies have shown that surface ozone shows distinct characteristics across India but these results are based on isolated locations and any comprehensive and spatiotemporally consistent study about surface ozone variability lacks thus far. Keeping these facts in mind, we utilize ground-based observations and reanalysis datasets to investigate spatiotemporal variations of surface ozone and its linkages with meteorology and precursors over Indian region. A validation exercise shows that the Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) reasonably compares against the ground-based observations showing better correlations (> 0.7) over southern regions and relatively lesser (> 0.5) correlations over northern and eastern regions. We have further quantified this agreement in terms of range, mean absolute error (MAE), and root mean square error (RMSE). A time series analysis shows that the CAMSRA captures seasonal variations irrespective of location. Spatial distribution of surface ozone shows higher (lower) concentrations of about 40-60 ppb (15-20 ppb) during pre-monsoon (monsoon) months over northern and western parts and peninsular India. A prominent increase during May is noted over the northern region, especially over the Indo-Gangetic Plains (IGP). These seasonal variations are linked to solar radiation (SR), temperature, low-level circulation, and boundary layer height (BLH). CAMSRA-based surface ozone shows increasing trends across all four regions (north, east, west, and south India) and also India as a whole (0.069 ppb year-1, p = 0.001) with highest trends over the eastern region. Furthermore, principal component analysis (PCA) reveals that the first (second) mode shows a high percentage variance explained, ranging between 30 and 50% (10-20%). The corresponding PC-1 time series exhibits a notable increase in the surface ozone over south and central India, which corroborates the trend obtained through the area averaged time series. The second mode (PC-2) indicates prominent interannual variability over the IGP (southern India) in the pre-monsoon (post-monsoon). During the monsoon season, an interesting dipole pattern is noticeable, which closely resembles the active and break spell patterns of the Indian summer monsoon. Further, we quantify the weightage of precursors and meteorological parameters on surface ozone concentrations. The analysis suggests that PC1 of surface ozone is strongly influenced by CO and NOx (the precursors) while meteorology seems to dominate the PC2 during the pre-monsoon season. Overall, the results indicate that changes in the precursors or meteorological conditions have significant influences on the surface ozone concentrations across India.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Efectos Antropogénicos , Monitoreo del Ambiente , India , Ozono/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...