Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 35(44): 5759-5769, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27109096

RESUMEN

The ability of breast cancer cells to resist anoikis, apoptosis caused by detachment of the non-malignant epithelial cells from the extracellular matrix (ECM), is thought to be critical for breast tumor growth, invasion and metastasis. ErbB2, an oncoprotein that is often overproduced in breast tumors, can block breast cancer cell anoikis via mechanisms that are understood only in part. In an effort to understand them better we found that detachment of the non-malignant human breast epithelial cells from the ECM upregulates a protein Perp in these cells. Perp is a component of the desmosomes, multiprotein complexes involved in cell-to-cell adhesion. Perp can cause apoptosis via unknown mechanisms. We demonstrated that Perp upregulation by cell detachment is driven by detachment-induced loss of epidermal growth factor receptor (EGFR). We also found that Perp knockdown by RNA interference (RNAi) rescues detached cells from death which indicates that Perp contributes to their anoikis. We observed that ErbB2, when overexpressed in detached breast epithelial cells, causes Perp downregulation. Furthermore, ErbB2-directed RNAi or treatment with lapatinib, an ErbB2/EGFR small-molecule inhibitor used for breast cancer therapy, upregulated Perp in ErbB2-positive human breast and ovarian carcinoma cells. We established that ErbB2 downregulates Perp by activating an ErbB2 effector protein kinase Mek that blocks detachment-induced EGFR loss in a manner that requires the presence of a signaling protein Sprouty-2. Finally, we observed that restoration of the wild-type Perp levels in ErbB2-overproducing breast epithelial cells increases their anoikis susceptibility and blocks their clonogenicity in the absence of adhesion to the ECM. In summary, we have identified a novel mechanism of ErbB2-mediated mechanism of anoikis resistance of ErbB2-overproducing breast epithelial cells. This mechanism allows such cells to grow without adhesion to the ECM and is driven by ErbB2-induced activation of Mek, subsequent EGFR upregulation and further EGFR-dependent Perp loss.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Receptor ErbB-2/metabolismo , Anoicis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Genes Supresores de Tumor , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo
2.
Oncogene ; 35(33): 4414-21, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-26725325

RESUMEN

The p53 tumor suppressor is a stress sensor, driving cell cycle arrest or apoptosis in response to DNA damage or oncogenic signals. p53 activation by oncogenic signals relies on the p19(Arf) tumor suppressor, while p53 activation downstream of acute DNA damage is reported to be p19(Arf)-independent. Accordingly, p19(Arf)-deficient mouse embryo fibroblasts (MEFs) arrest in response to acute DNA damage. However, p19(Arf) is required for replicative senescence, a condition associated with an activated DNA damage response, as p19(Arf)-/- MEFs do not senesce after serial passage. A possible explanation for these seemingly disparate roles for p19(Arf) is that acute and chronic DNA damage responses are mechanistically distinct. Replicative senescence may result from chronic, low-dose DNA damage responses in which p19(Arf) has a specific role. We therefore examined the role of p19(Arf) in cellular responses to chronic, low-dose DNA-damaging agent treatment by maintaining MEFs in low oxygen and administering 0.5 G y γ-irradiation daily or 150 µM hydroxyurea, a replication stress inducer. In contrast to their response to acute DNA damage, p19(Arf)-/- MEFs exposed to chronic DNA damage do not senesce, revealing a selective role for p19(Arf) in senescence upon low-level, chronic DNA damage. We show further that p53 pathway activation in p19(Arf)-/- MEFs exposed to chronic DNA damage is attenuated relative to wild-type MEFs, suggesting a role for p19(Arf) in fine-tuning p53 activity. However, combined Nutlin3a and chronic DNA-damaging agent treatment is insufficient to promote senescence in p19(Arf)-/- MEFs, suggesting that the role of p19(Arf) in the chronic DNA damage response may be partially p53-independent. These data suggest the importance of p19(Arf) for the cellular response to the low-level DNA damage incurred in culture or upon oncogene expression, providing new insight into how p19(Arf) serves as a tumor suppressor. Moreover, our study helps reconcile reports suggesting crucial roles for both p19(Arf) and DNA damage-signaling pathways in tumor suppression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Daño del ADN , Animales , Puntos de Control del Ciclo Celular , Rayos gamma , Genes Supresores de Tumor , Ratones , Proteína p53 Supresora de Tumor/fisiología
3.
Cell Death Differ ; 22(4): 560-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25501595

RESUMEN

Acute muscle injury and physiological stress from chronic muscle diseases and aging lead to impairment of skeletal muscle function. This raises the question of whether p53, a cellular stress sensor, regulates muscle tissue repair under stress conditions. By investigating muscle differentiation in the presence of genotoxic stress, we discovered that p53 binds directly to the myogenin promoter and represses transcription of myogenin, a member of the MyoD family of transcription factors that plays a critical role in driving terminal muscle differentiation. This reduction of myogenin protein is observed in G1-arrested cells and leads to decreased expression of late but not early differentiation markers. In response to acute genotoxic stress, p53-mediated repression of myogenin reduces post-mitotic nuclear abnormalities in terminally differentiated cells. This study reveals a mechanistic link previously unknown between p53 and muscle differentiation, and suggests new avenues for managing p53-mediated stress responses in chronic muscle diseases or during muscle aging.


Asunto(s)
Miogenina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Miogenina/química , Miogenina/genética , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
5.
Oncogene ; 30(29): 3207-21, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21423206

RESUMEN

FoxO transcription factors have a conserved role in longevity, and act as tissue-specific tumor suppressors in mammals. Several nodes of interaction have been identified between FoxO transcription factors and p53, a major tumor suppressor in humans and mice. However, the extent and importance of the functional interaction between FoxO and p53 have not been fully explored. Here, we show that p53 regulates the expression of FoxO3, one of the four mammalian FoxO genes, in response to DNA damaging agents in both mouse embryonic fibroblasts and thymocytes. We find that p53 transactivates FoxO3 in cells by binding to a site in the second intron of the FoxO3 gene, a genomic region recently found to be associated with extreme longevity in humans. While FoxO3 is not necessary for p53-dependent cell cycle arrest, FoxO3 appears to modulate p53-dependent apoptosis. We also find that FoxO3 loss does not interact with p53 loss for tumor development in vivo, although the tumor spectrum of p53-deficient mice appears to be affected by FoxO3 loss. Our findings indicate that FoxO3 is a p53 target gene, and suggest that FoxO3 and p53 are part of a regulatory transcriptional network that may have an important role during aging and cancer.


Asunto(s)
Factores de Transcripción Forkhead/genética , Longevidad/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Secuencia de Bases , Sitios de Unión , Ciclo Celular/genética , Células Cultivadas , Daño del ADN , Cartilla de ADN , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteína Forkhead Box O3 , Imidazoles/farmacología , Ratones , Piperazinas/farmacología , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
6.
Cell Death Differ ; 14(7): 1374-85, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17464332

RESUMEN

p53 plays a central role in neuronal cell death resulting from acute injury or disease. To define the pathway by which p53 triggers apoptosis, we used microarray analysis to identify p53 target genes specifically upregulated during apoptosis but not cell cycle arrest. This analysis identified a small subset of targets highly selective for the p53 apoptotic response, including Siva, a proapoptotic protein whose function is not well understood. Siva's expression pattern suggests that it plays an instructive role in apoptosis, and accordingly, we demonstrate that Siva is essential for p53-dependent apoptosis in cerebellar granule neurons. In addition, we determine that endogenous Siva is associated with the plasma membrane and that Caspase-8 and Bid are important for neuronal apoptosis. Our studies highlight the participation of membrane signaling events in p53's apoptotic program in primary neurons and have significant implications for understanding the mechanisms underlying pathogenesis after neuronal injury and in neurodegenerative diseases.


Asunto(s)
Apoptosis/fisiología , Encefalopatías/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Degeneración Nerviosa/genética , Neuronas/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Caspasa 8/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo
9.
Genes Dev ; 14(23): 3037-50, 2000 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11114892

RESUMEN

The retinoblastoma protein, pRB, and the closely related proteins p107 and p130 are important regulators of the mammalian cell cycle. Biochemical and genetic studies have demonstrated overlapping as well as distinct functions for the three proteins in cell cycle control and mouse development. However, the role of the pRB family as a whole in the regulation of cell proliferation, cell death, or cell differentiation is not known. We generated embryonic stem (ES) cells and other cell types mutant for all three genes. Triple knock-out mouse embryonic fibroblasts (TKO MEFs) had a shorter cell cycle than wild-type, single, or double knock-out control cells. TKO cells were resistant to G(1) arrest following DNA damage, despite retaining functional p53 activity. They were also insensitive to G(1) arrest signals following contact inhibition or serum starvation. Finally, TKO MEFs did not undergo senescence in culture and do possess some characteristics of transformed cells. Our results confirm the essential role of the Rb family in the control of the G(1)/S transition, place the three Rb family members downstream of multiple cell cycle control pathways, and further the link between loss of cell cycle control and tumorigenesis.


Asunto(s)
Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Proteínas , Proteína de Retinoblastoma/fisiología , Animales , Ciclo Celular , División Celular , Supervivencia Celular , Transformación Celular Neoplásica , Células Cultivadas , Medio de Cultivo Libre de Suero , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Doxorrubicina/farmacología , Fase G1 , Marcación de Gen , Genes ras , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma , Proteína p130 Similar a la del Retinoblastoma
10.
Genes Dev ; 14(6): 704-18, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10733530

RESUMEN

The p53 tumor suppressor activates either cell cycle arrest or apoptosis in response to cellular stress. Mouse embryo fibroblasts (MEFs) provide a powerful primary cell system to study both p53-dependent pathways. Specifically, in response to DNA damage, MEFs undergo p53-dependent G(1) arrest, whereas MEFs expressing the adenovirus E1A oncoprotein undergo p53-dependent apoptosis. As the p53-dependent apoptosis pathway is not well understood, we sought to identify apoptosis-specific p53 target genes using a subtractive cloning strategy. Here, we describe the characterization of a gene identified in this screen, PERP, which is expressed in a p53-dependent manner and at high levels in apoptotic cells compared with G(1)-arrested cells. PERP induction is linked to p53-dependent apoptosis, including in response to E2F-1-driven hyperproliferation. Furthermore, analysis of the PERP promoter suggests that PERP is directly activated by p53. PERP shows sequence similarity to the PMP-22/gas3 tetraspan membrane protein implicated in hereditary human neuropathies such as Charcot-Marie-Tooth. Like PMP-22/gas3, PERP is a plasma membrane protein, and importantly, its expression causes cell death in fibroblasts. Taken together, these data suggest that PERP is a novel effector of p53-dependent apoptosis.


Asunto(s)
Apoptosis/genética , Proteínas Portadoras , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Proteínas de la Membrana/genética , Proteínas de la Mielina/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , ADN Complementario , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteína 1 de Unión a Retinoblastoma , Homología de Secuencia de Aminoácido , Factor de Transcripción DP1 , Factores de Transcripción/metabolismo
11.
Cell Mol Life Sci ; 55(1): 48-63, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10065151

RESUMEN

The use of mouse models has greatly contributed to our understanding of the role of p53 in tumour suppression. Mice homozygous for a deletion in the p53 gene develop tumours at high frequency, providing essential evidence for the importance of p53 as a tumour suppressor. Additionally, crossing these knockout mice or transgenic expression p53 dominant negative alleles with other tumour-prone mouse strains has allowed the effect of p53 loss on tumour development to be examined further. In a variety of mouse models, absence of p53 facilitates tumorigenesis, thus providing a means to study how the lack of p53 enhances tumour development and to define genetic pathways of p53 action. Depending on the particular model system, loss of p53 either results in deregulated cell-cycle entry or aberrant apoptosis (programmed cell death), confirming results found in cell culture systems and providing insight into in vitro function of p53. Finally, as p53 null mice rapidly develop tumours, they are useful for evaluating agents for either chemopreventative or therapeutic activities.


Asunto(s)
Genes Supresores de Tumor/genética , Genes p53/genética , Animales , Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Virus ADN Tumorales/genética , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Neoplasias Experimentales/inducido químicamente , Oncogenes/genética
12.
EMBO J ; 15(14): 3693-701, 1996 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-8758936

RESUMEN

The p53 tumor suppressor limits cellular proliferation by inducing either G1 arrest or apoptosis, depending on the cellular context. To determine if these pathways are mechanistically distinct, we have examined the effects of different p53 mutants in p53 null primary mouse embryo fibroblasts. We chose this system as it is highly physiological and ensures that the interpretation of the results will not be confounded by the presence of endogenous p53 or oncoproteins which target p53. Using single cell microinjection assays for both G1 arrest and apoptosis, with loss-of-function and chimeric gain-of-function mutants, we have demonstrated that transcriptional activation is critical for both processes. Replacement of the p53 activation domain with that of VP16, or replacement of the p53 oligomerization domain with that of GCN4, reconstituted both G1 arrest and apoptosis activities. However, despite the importance of transcriptional activation in both processes, the target gene requirements are different. The p21 cyclin-dependent kinase inhibitor, which has been shown to be a direct target of p53 and a component of the radiation-induced G1 arrest response, is dispensable for oncogene-induced apoptosis, suggesting that these two p53-dependent transcriptional pathways are distinct.


Asunto(s)
Apoptosis , Ciclinas/fisiología , Oncogenes , Activación Transcripcional , Proteína p53 Supresora de Tumor/fisiología , Proteínas E1A de Adenovirus/biosíntesis , Animales , Apoptosis/genética , Apoptosis/fisiología , Sitios de Unión , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/biosíntesis , Ciclinas/genética , Fase G1 , Ratones , Mutagénesis , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
13.
Nat Genet ; 10(2): 175-80, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7663512

RESUMEN

Defects in neural tube formation are among the most common malformations leading to infant mortality. Although numerous genetic loci appear to contribute to the defects observed in humans and in animal model systems, few of the genes involved have been characterized at the molecular level. Mice lacking the p53 tumour suppressor gene are predisposed to tumours, but the viability of these animals indicates that p53 function is not essential for embryonic development. Here, we demonstrate that a fraction of p53-deficient embryos in fact do not develop normally. These animals display defects in neural tube closure resulting in an overgrowth of neural tissue in the region of the mid-brain, a condition known as exencephaly.


Asunto(s)
Eliminación de Gen , Genes p53 , Defectos del Tubo Neural/genética , Animales , Apoptosis/genética , Secuencia de Bases , ADN/análisis , Femenino , Masculino , Mesencéfalo/anomalías , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Datos de Secuencia Molecular , Defectos del Tubo Neural/mortalidad , Defectos del Tubo Neural/patología , Fenotipo , Factores Sexuales
14.
Cell ; 79(1): 93-105, 1994 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-7923382

RESUMEN

We previously reported that transcriptional regulators can bind selected TAF subunits of the TFIID complex. However, the specificity and function of individual TAFs in mediating transcriptional activation remained unknown. Here we report the in vitro assembly and transcriptional properties of TBP-TAF complexes reconstituted from the nine recombinant subunits of Drosophila TFIID. A minimal complex containing TBP and TAFII250 directs basal but not activator-responsive transcription. By contrast, reconstituted holo-TFIID supports activation by an assortment of activators. The activator NTF-1, which binds TAFII150, stimulates transcription with a complex containing only TBP, TAFII250, and TAFII150, whereas Sp1 binds and additionally requires TAFII110 for activation. Interestingly, TAFII150 enhances Sp1 activation even though this subunit does not bind directly to Sp1. These results establish that specific subcomplexes of TFIID can mediate activation by different classes of activators and suggest that TAFs perform multiple functions during activation.


Asunto(s)
Proteínas de Drosophila , Proteínas Recombinantes/biosíntesis , Factores Asociados con la Proteína de Unión a TATA , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila , Histona Acetiltransferasas , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Factor de Transcripción Sp1/metabolismo , TATA Box , Proteína de Unión a TATA-Box , Factor de Transcripción TFIID , Transcripción Genética/fisiología , Activación Transcripcional
15.
Proc Natl Acad Sci U S A ; 90(22): 10563-7, 1993 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8248145

RESUMEN

The Drosophila melanogaster tissue-specific transcription factor NTF-1 was originally identified in vitro as a protein that could bind to and activate transcription from the Dopa decarboxylase (Ddc) gene. A structure-function analysis of NTF-1 led to the identification of a discrete amino-terminal activation domain. Here, we report that an NTF-1 mutant lacking the activation domain acts as a trans-dominant inhibitor of NTF-1 activation in tissue culture cells by forming inactive heterodimers with the full-length protein. Ectopically expressing this dominant-negative protein or the full-length protein in developing Drosophila embryos leads to dire developmental consequences. Overexpressing the trans-dominant NTF-1 leads to lethality, while overexpressing full-length NTF-1 results in both lethality and morphogenetic defects. Our results suggest that both the activity and the regulation of NTF-1 are critical for viability and proper development of the fly.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Drosophila melanogaster/embriología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Drosophila , Expresión Génica , Genes Dominantes , Técnicas In Vitro , Larva , Fenotipo , ARN Mensajero/genética
16.
Genes Dev ; 7(7B): 1341-53, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8330738

RESUMEN

The Drosophila tissue-specific transcription factor NTF-1 provides a useful model system for studying the mechanisms by which promoter-selective factors control the development of a multicellular organism. A number of promoters that may be targets of NTF-1 regulation have been identified. For example, NTF-1 plays a critical role in the tissue-specific expression of the Drosophila Dopa decarboxylase gene. Additionally, by using in vitro assays, it has been possible to characterize the mechanism of NTF-1 activation, revealing its dependence on specific coactivators, or TAFs. Here, we report the use of both in vivo and in vitro assays to identify the functional domains of NTF-1. These consist of an unusually large, unique DNA-binding and dimerization domain, as well as a novel, isoleucine-rich activation domain. This 56-amino-acid activation region fails to interact with the putative Sp1 coactivator, dTAFII110, and thus appears to use a mechanism distinct from the glutamine-rich activation domain of Sp1. Additionally, NTF-1 appears to activate transcription in a species-specific manner, utilizing distinct domains in Drosophila and yeast.


Asunto(s)
Proteínas de Unión al ADN/química , Isoleucina/química , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/química , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Células Cultivadas , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Proteínas de Drosophila , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Nature ; 344(6262): 126-32, 1990 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-1689810

RESUMEN

Mutating the CAACCCCAA sequence in the RNA component of telomerase causes the synthesis in vivo of new telomere sequences corresponding to the mutated RNA sequence, demonstrating that the telomerase contains the template for telomere synthesis. These mutations also lead to nuclear and cell division defects, and senescence, establishing an essential role for telomerase in vivo.


Asunto(s)
ADN Nucleotidilexotransferasa/metabolismo , Mutación , ARN/genética , Tetrahymena/genética , Animales , Secuencia de Bases , Expresión Génica , Genes , Vectores Genéticos , Datos de Secuencia Molecular , Plásmidos , Moldes Genéticos , Tetrahymena/enzimología
18.
Genes Dev ; 3(11): 1677-88, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2606344

RESUMEN

In an effort to characterize sequence-specific transcription factors that regulate gene expression during Drosophila development, we identified and purified a novel DNA-binding activity (NTF-1). The purified protein consists of several polypeptides that bind selectively to a functionally important cis-control element of the Ultrabithorax (Ubx) promoter and to the neurogenic elements of both the dopa decarboxylase (Ddc) and fushi tarazu (ftz) promoter/enhancer regions. Purified NTF-1 activates transcription in vitro in a binding site-dependent manner through upstream sequences of the Ubx promoter. A cDNA clone encoding the open reading frame of NTF-1 was isolated, and the deduced primary amino acid sequence of NTF-1 includes a glutamine-rich region reminiscent of the transcriptional activation domains found in Sp1 but no recognizable DNA-binding domain. NTF-1 expression is temporally regulated during embryonic development. In addition, in situ hybridization experiments revealed that NTF-1 is transcribed in a spatially restricted pattern in the embryo, with the highest level of expression observed in the epidermis and a subset of cells in the CNS. Expression of the NTF-1 cDNA in mammalian cells yields a protein that displays DNA-binding and transcriptional activities indistinguishable from that of the collection of proteins isolated from Drosophila embryos. These findings suggest that NTF-1 is a member of a family of developmentally regulated transcription factors that may be involved in directing the expression of genes such as Ubx, Ddc, and ftz in neuronal cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Clonación Molecular , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Drosophila , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Transcripción Genética , Virus Vaccinia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA