Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36980840

RESUMEN

The GNE-associated V727M mutation is one of the most prevalent ethnic founder mutations in the Asian HIBM cohort; however, its role in inducing disease phenotype remains largely elusive. In this study, the function of this hotspot mutation was profoundly investigated. For this, V727M mutation-specific altered expression profile and potential networks were explored. The relevant muscular disorder-specific in vivo studies and patient data were further analyzed, and the key altered molecular pathways were identified. Our study found that the GNEV727M mutation resulted in a deregulated lincRNA profile, the majority of which (91%) were associated with a down-regulation trend. Further, in silico analysis of associated targets showed their active role in regulating Wnt, TGF-ß, and apoptotic signaling. Interestingly, COL6a3 was found as a key target of these lincRNAs. Further, GSEA analysis showed HIBM patients with variable COL6A3 transcript levels have significant alteration in many critical pathways, including epithelial-mesenchymal-transition, myogenesis, and apoptotic signaling. Interestingly, 12 of the COL6A3 coexpressed genes also showed a similar altered expression profile in HIBM. A similar altered trend in COL6A3 and coexpressed genes were found in in vivo HIBM disease models as well as in multiple other skeletal disorders. Thus, the COL6A3-specific 13 gene signature seems to be altered in multiple muscular disorders. Such deregulation could play a pivotal role in regulating many critical processes such as extracellular matrix organization, cell adhesion, and skeletal muscle development. Thus, investigating this novel COL6A3-specific 13 gene signature provides valuable information for understanding the molecular cause of HIBM and may also pave the way for better diagnosis and effective therapeutic strategies for many muscular disorders.


Asunto(s)
Colágeno Tipo VI , Enfermedades Musculares , Humanos , Apoptosis , Colágeno Tipo VI/genética , Enfermedades Musculares/genética , Mutación , Fenotipo , Transducción de Señal
2.
Open Med (Wars) ; 16(1): 1733-1744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34825065

RESUMEN

GNE gene-specific c.2179G>A(p.V727M) is a key alteration reported in patients with hereditary inclusion body myopathy (HIBM) and represents an ethnic founder mutation in the Indian cohort. However, the underlying role of this mutation in pathogenesis remains largely unknown. Thus, in this study, we aimed to access possible mechanisms of V727M mutation that could be leading to myopathy. We evaluated various in silico tools to predict the effect of this mutation on pathogenicity, structural or possible interactions, that could induce myopathy. Our results propose that V727M mutation could induce deleterious effects or pathogenicity and affect the stability of GNE protein. Analysis of differential genes reported in the V727 mutant case suggests that it can affect GNE protein interaction with Myc-proto-oncogene (MYC) transcription factor. Our in silico analysis also suggests a possible interaction between GNE ManNac-kinase domain with MYC protein at the C-terminal DNA-binding domain. MYC targets reported in skeletal muscles via ChIP-seq suggest that it plays a key role in regulating the expression of many genes reported differentially expressed in V727M-mutated HIBMs. We conclude that V727M mutation could alter the interaction of GNE with MYC thereby altering transcription of sialyltransferase and neuromuscular genes, thus understanding these effects could pave the way for developing effective therapies against HIBM.

3.
Neurol India ; 69(4): 797-807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34507392

RESUMEN

BACKGROUND: Proper diagnosis is the first and most critical step for effective identification and treatment of myopathy and dystrophy disorders. Although various histochemical and biochemical studies have paved the way for efficient testing of these disorders, they are insufficient for accurate diagnosis. To overcome this, the diagnostic procedure has now shifted more toward the "genetic first approach," with the remarkable role played by various genetic and molecular techniques. OBJECTIVE: In developing countries, successful diagnosis of such disorders is affected by the shortage of hospitals, poor lab setup, limited diagnostic methods, and unavailability of technical expertise. As a major population living in developing countries faces such inadequate healthcare facilities, there has always been a need for identifying effective diagnostic techniques that could identify genetic alterations more prone in such regions. MATERIALS AND METHODS: This article reviews studies done in the last few years that primarily use nonsequencing-based molecular diagnosis methods to identify myopathy- and dystrophy-specific gene alterations and thus could equally hold potential for screening key genetic alterations reported in certain regions in developing countries. Further, this review deals with new emerging sequencing and next-generation sequencing (NGS)-based approach and their potential in providing an adequate diagnosis. CONCLUSIONS: This study promotes nonsequencing-based molecular methods to be an effective method for early-stage diagnosis and management of myopathies and dystrophies in developing countries and suggests the high importance of emerging NGS methods in proper diagnosis and identifying new players in neuromuscular disorders.


Asunto(s)
Enfermedades Musculares , Enfermedades Neuromusculares , Países en Desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA