Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 174: 518-527, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134539

RESUMEN

Solid-state fermentation (SSF) carried out by microbial bioinoculants is an environmentally friendly technology for the sustainable recovery and valorization of agri-food wastes. Particularly, mesophilic SSF processes allows the production of bio-organic fertilizers enriched with beneficial soil microorganisms. However, the establishment of microbial consortia and the interaction with native waste microbiota still require thoughtful investigations. Here, raw brewers' spent grain (BSG), the main waste from the brewing industry, was subjected to two mesophilic SSF processes (maximum temperature of 35 °C) carried out by a multi-kingdom microbial bioinoculant and the BSG spontaneous microbiota. After 90 days, both SSF processes led to stable organic soil amendments, as indicated by the C:N ratio (10.00 ± 1.4), pH (6.66 ± 0.09), and DOC (8.45 ± 1.2 mg/g) values. Additionally, the fermented BSG showed a high nitrogen content (42.2 ± 3.4 mg/Kg) and biostimulating activities towardLepidium sativumseeds. The monitoring of microbial communities by high-throughput sequencing of 16S and ITS rRNA indicated that BSG samples were enriched in microbial genera with interesting agronomic applications (i.e.,Devosia, Paenibacillum, Trichoderma, Mucor, etc.). Microbial cross-kingdom network analyses suggested that the microbial assembly of BSG was significantly influenced by the bioinoculant, despite the inoculated microbial genera being able to persist in BSG samples only the first week of SSF. This suggests that the study of microbial interactions between exogenous microbial inoculants and waste resident microbiota is required to optimize SSF processes aimed at the recovery and valorization of unprocessed wastes.


Asunto(s)
Consorcios Microbianos , Suelo , Fermentación , Grano Comestible/química
2.
J Dairy Sci ; 106(12): 9691-9703, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641297

RESUMEN

This study aimed to test possible metabolic differences between ewes and goats in response to an intravenous glucose infusion. Thirty-six animals, 18 mature Sarda dairy ewes and 18 mature Saanen goats (from 15 to 150 ± 11 d in milk [DIM], mean ± SD; body weight: 49.8 ± 6.8 kg for ewes, 60.6 ± 7.3 kg for goats) were compared simultaneously. In early lactation, both species received the same high-starch diet (HS: 20.4% starch, 35.4% neutral detergent fiber [NDF], on dry matter [DM] basis), whereas from 92 ± 11 DIM both species were randomly allocated to 2 dietary treatments: HS (20.0% starch, 36.7% NDF, on DM basis) and low-starch (LS: 7.8% starch, 48.8% NDF, on DM basis) diets. At 50 and 150 ± 11 DIM, ewes and goats were challenged with an intravenous glucose tolerance test and peripheral concentrations of glucose and insulin were determined 15 min before and 5, 10, 15, 30, 45, 90, and 180 min after glucose infusion. In early lactation, baseline plasma glucose and insulin concentrations tended to be higher in ewes than in goats (glucose: 55.8 vs. 42.9 ± 7.3 mg/dL; insulin: 0.13 vs. 0.05 ± 0.04 µg/L). After glucose infusion, glucose and insulin concentrations were higher in ewes than in goats (278.6 vs. 247.6 ± 13.1 mg/dL; 0.82 vs. 0.46 ± 0.12 µg/L). In mid-lactation, the dietary treatment (HS vs. LS) did not affect glucose and insulin metabolism. Baseline plasma glucose was numerically highest in ewes, while baseline insulin was higher in ewes than in goats (0.39 vs. 0.12 ± 0.099 µg/L). After glucose infusion, glucose concentration did not differ between ewes and goats, while insulin concentration was highest in ewes. Compared with goats, ewes showed in both periods a higher peak insulin, insulin increment, linear insulin area under the curve, insulin resistance index, and lower insulin sensitivity indices. In conclusion, despite the limitations associated with the use of intravenous glucose tolerance test to assess glucose regulation mechanisms, this study indicated large species differences in both early and mid-lactation and a more evident anabolic status in the ewes compared with the goats.


Asunto(s)
Insulinas , Almidón , Animales , Femenino , Ovinos , Almidón/metabolismo , Glucosa/metabolismo , Glucemia/metabolismo , Cabras/metabolismo , Lactancia/fisiología , Dieta/veterinaria , Leche/metabolismo , Alimentación Animal/análisis , Fibras de la Dieta/metabolismo
3.
Transl Anim Sci ; 6(2): txac042, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35592094

RESUMEN

Muddy pens can negatively affect welfare and performance of feedlot beef cattle. In some regions with temperate weather, plastic greenhouse covers, above the entire pens are used to fatten cattle in a clean and dry environment. The objective of this research was to investigate effects of greenhouse roofed pens on beef cattle feedlot performance in temperate weather. Data were collected from a feedlot located in Central Mexico between 2016 and 2019. The study included 1,062 closeouts of pens with 68,305 crossbred bulls fed in pens with or without a greenhouse roof. Feeding ranged from 82 to 210 d, depending on the initial weight of cattle, which ranged from 255 to 511 kg. For each pen, average daily dry matter intake (DMI; kg of DMI·animal-1·d-1), average daily gain (ADG, kg·animal-1·d-1), and feed efficiency (G:F, ADG/DMI) were measured. Factorial analyses were performed to test the interaction and main effects of initial weight grouping (light, medium, and heavy), roof, and season as fixed effects, and year as a random effect. None of the three-way interactions were significant (P > 0.51). There was no initial weight grouping × roof interactions for DMI and ADG (P > 0.31). There was (P = 0.03) an initial weight grouping × roof interaction for G:F, as pens of all initial weight groups had greater (P < 0.01) G:F in pens with greenhouse roof than its counterpart in pens without greenhouse roof, but the advantage was greater for pens with light cattle (0.178 vs. 0.166; P < 0.01). There was no initial weight grouping × season interactions for all variables (P > 0.39). There was no roof × season interaction for DMI (P = 0.47), but there were interactions for ADG and G:F (P < 0.01). The ADG was not different (P > 0.13) during summer and autumn based on the roofing system, but pens with greenhouse roofs had greater ADG during spring (1.70 vs. 1.61) and winter (1.68 vs. 1.64; P ≤ 0.01). The G:F was greater (P < 0.01) in all seasons for pens with a greenhouse roof, with the most prominent advantage during spring (0.173 vs. 0.160). There were main effects for cattle initial weight grouping and roof for all variables (P < 0.01). Season affected DMI and G:F (P < 0.01). Pens with greenhouse roofs had decreased DMI (9.70 vs. 9.86), greater ADG (1.67 vs. 1.63), and increased G:F (0.173 vs. 0.166) compared to pens without greenhouse roofs (P < 0.01). Pens with greenhouse roofs in feedlots located in temperate regions positively affect beef cattle performance.

4.
Sci Total Environ ; 802: 149792, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464790

RESUMEN

The eco-sustainability of industrial processes relies on the proper exploitation of by-products and wastes. Recently, brewers' spent grain (BSG), the main by-product of brewing, was successfully recycled through vermicomposting to produce an organic soil conditioner. However, the pre-processing step there applied (oven-drying) resulted in high costs and the suppression of microbial species beneficial for soil fertility. To overcome these limitations, a low-input pre-processing step was here applied to better exploit BSG microbiota and to make BSG suitable for vermicomposting. During 51 days of pre-treatment, the bacterial and fungal communities of BSG were monitored by denaturing gradient gel electrophoresis (DGGE). Chemical (carbon, nitrogen, ammonium, nitrate content, dissolved organic carbon) and biochemical (dehydrogenase activity) parameters were also evaluated. Mature vermicompost obtained from pre-processed BSG was characterized considering its legal requirements (e.g., absence of pathogens and mycotoxins, lack of phytotoxicity on seeds), microbiota composition, and chemical properties. Results obtained showed that throughout the pre-process, the BSG microbiota was enriched in bacterial and fungal species of significant biotechnological and agronomic potential, including lactic acid bacteria (Weissella, Pediococcus), plant growth-promoting bacteria (Bacillus, Pseudomonas, Pseudoxhantomonas), and biostimulant yeasts (Pichia fermentans, Trichoderma reesei, Beauveria bassiana). Pre-processing increased the suitability of BSG for earthworms' activity to produce high-quality mature vermicompost.


Asunto(s)
Lactobacillales , Oligoquetos , Animales , Grano Comestible , Hypocreales , Pichia
5.
Animals (Basel) ; 10(9)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32948051

RESUMEN

The aim of this experiment was to study the effects of a 40% inclusion of broccoli by-product (BB) and artichoke plant (AP) silages in dairy goat diets on the milk yield, composition and animal health status during a full lactation. Feed consumption was lower in AP and BB animals due to their composition and higher moisture content, and BB animals showed a significant reduction in body weight. Milk from the BB treatment had the highest fat content, total solids and useful dry matter content (5.02, 13.9 and 8.39%, respectively). The Se level was slightly lower in AP and BB animals; however, the milk of these treatments was the lowest in Na and, in the case of BB animals, the richest in Ca (1267 mg/kg). Control and AP milk showed a similar fatty acid profile, although AP had a more beneficial aptitude for human health (lower ratio of n6/n3, 12.5). Plasma components, as metabolic parameters, were adequate for goats. It was concluded that a 40% inclusion of AP is an adequate solution to reduce the cost of feeding without harming the animals' health or performance and to improve the nutritional milk quality. It is necessary to lower the BB level of inclusion to increase feed consumption.

6.
Foods ; 9(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492779

RESUMEN

In the Mediterranean region, artichoke and broccoli are major crops with a high amount of by-products that can be used as alternative feedstuffs for ruminants, lowering feed costs and enhancing milk sustainability while reducing the environmental impact of dairy production. However, nutritional quality of milk needs to be assured under these production conditions and an optimal inclusion ratio of silages should be determined. This work aimed to evaluate the effect of three inclusion levels (25%, 40%, and 60%) of these silages (artichoke plant, AP, and broccoli by-product, BB) in goat diets on milk yield, composition, and mineral and fatty profiles. Treatments with 60% inclusion of AP and BB presented the lowest milk yield. No differences were found on the milk mineral profile. Inclusion of AP in the animals' diet improved the milk lipid profile from the point of view of human health (AI, TI) compared to BB due to a lower saturated fatty acid content (C12:0, C14:0, and C16:0) and a higher concentration of polyunsaturated fatty acids (PUFA), especially vaccenic acid (C18:1 trans11) and rumenic acid (CLA cis9, trans11), without any differences with the control treatment.

8.
Mol Reprod Dev ; 85(5): 406-416, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29542837

RESUMEN

Maternal nutrition during critical gestation periods impacts on offspring in later life; effects of high-starch maternal diet on testicular development in lambs were addressed. Dairy ewes were fed diets providing either 27% (Starch, S) or 11% (Fiber, F) of starch from mating to lambing (∼147 days; S147, F147) or for the last 75 days of gestation (S75, F75). Testes of single male lambs were measured and then sampled for histological and gene expression analyses at selected ages. Testicular dimensions and weight were similar among groups, but the total area of seminiferous tubules increased with age and tended to be higher (p = 0.057) in lambs from starch- than fiber-fed ewes. Sertoli and germ cells number increased with age, but was not influenced by maternal diet. Transcript abundances of androgen receptor (AR), insulin-like growth factor 1 (IGF1), and hydroxysteroid (17-beta) dehydrogenase 3 (HSD17B3) was similar between S147 and F147 lambs (p > 0.1). Abundance of luteinizing hormone/choriogonadotropin receptor (LHCGR) and steroidogenic acute regulatory protein (STAR) was higher in young vs older lambs, whereas insulin-like growth factor 2 (IGF2) levels increased with age. The expression of vascular endothelial growth factor A (VEGFA), Anti-Müllerian hormone (AMH), IGF1, follicle stimulating hormone receptor (FSHR), and insulin-like growth factor 2 receptor (IGF2R) was not influenced by maternal diet or lamb age (p > 0.1). In conclusion, a high-starch maternal diet did not influence gene expression, but may have affected testicular structure in infant offspring, as seen by an increase in the total area of seminiferous tubules.


Asunto(s)
Alimentación Animal , Regulación de la Expresión Génica/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Túbulos Seminíferos/crecimiento & desarrollo , Células de Sertoli/metabolismo , Ovinos/crecimiento & desarrollo , Almidón/farmacología , Animales , Femenino , Masculino , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...