Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 12(2): 2245921, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37542391

RESUMEN

Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.


Asunto(s)
COVID-19 , Resfriado Común , Cricetinae , Animales , Humanos , SARS-CoV-2 , Mesocricetus , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunoglobulina A , Glicoproteína de la Espiga del Coronavirus
2.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36591327

RESUMEN

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

3.
Emerg Microbes Infect ; 12(1): 2146538, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354024

RESUMEN

ABSTRACTIncreasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II and III bNAbs with new epitopes mapped to the receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos ampliamente neutralizantes , Vacuna BNT162 , Infección Irruptiva , Inmunidad Adaptativa , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
4.
Cell Mol Immunol ; 19(11): 1302-1310, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36224497

RESUMEN

Mutations in SARS-CoV-2 variants of concern (VOCs) have enhanced transmissibility and immune evasion with respect to current vaccines and neutralizing antibodies (NAbs). How naturally occurring spike mutations affect the infectivity and antigenicity of VOCs remains to be investigated. The entry efficiency of individual spike mutations was determined in vitro using pseudotyped viruses. BALB/c mice were immunized with 2-dose DNA vaccines encoding B.1.1.7, B.1.351, B.1.1.529  and their single mutations. Cellular and humoral immune responses were then compared to determine the impact of individual mutations on immunogenicity. In the B.1.1.7 lineage, Del69-70 and Del 144 in NTD, A570D and P681H in SD1 and S982A and D1118H in S2 significantly increased viral entry, whereas T716I resulted in a decrease. In the B.1.351 lineage, L18F and Del 242-244 in the NTD, K417N in the RBD and A701V in S2 also increased viral entry. S982A weakened the generation of binding antibodies. All sera showed reduced cross-neutralization activity against B.1.351, B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.1). S982A, L18F, and Del 242-244 hindered the induction of cross-NAbs, whereas Del 69-70, Del144, R246I, and K417N showed the opposite effects. B.1.351 elicited adequate broad cross-NAbs against both B.1.351 and B.1.617.2. All immunogens tested, however, showed low neutralization against circulating B.1.1.529. In addition, T-cell responses were unlikely affected by mutations tested in the spike. We conclude that individual spike mutations influence viral infectivity and vaccine immunogenicity. Designing VOC-targeted vaccines is likely necessary to overcome immune evasion from current vaccines and neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , COVID-19/virología , Ratones Endogámicos BALB C , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
Nat Commun ; 13(1): 3589, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739114

RESUMEN

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variants have posed great challenges to the efficacy of current vaccines and antibody immunotherapy. Here, we screen 34 BNT162b2-vaccinees and isolate a public broadly neutralizing antibody ZCB11 derived from the IGHV1-58 family. ZCB11 targets viral receptor-binding domain specifically and neutralizes all SARS-CoV-2 variants of concern, especially with great potency against authentic Omicron and Delta variants. Pseudovirus-based mapping of 57 naturally occurred spike mutations or deletions reveals that S371L results in 11-fold neutralization resistance, but it is rescued by compensating mutations in Omicron variants. Cryo-EM analysis demonstrates that ZCB11 heavy chain predominantly interacts with Omicron spike trimer with receptor-binding domain in up conformation blocking ACE2 binding. In addition, prophylactic or therapeutic ZCB11 administration protects lung infection against Omicron viral challenge in golden Syrian hamsters. These results suggest that vaccine-induced ZCB11 is a promising broadly neutralizing antibody for biomedical interventions against pandemic SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , Animales , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/prevención & control , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
6.
EBioMedicine ; 77: 103904, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35248996

RESUMEN

BACKGROUND: Nearly 4 billion doses of the BNT162b2-mRNA and CoronaVac-inactivated vaccines have been administrated globally, yet different vaccine-induced immunity against SARS-CoV-2 variants of concern (VOCs) remain incompletely investigated. METHODS: We compare the immunogenicity and durability of these two vaccines among fully vaccinated Hong Kong people. FINDINGS: Standard BNT162b2 and CoronaVac vaccinations were tolerated and induced neutralizing antibody (NAb) (100% and 85.7%) and spike-specific CD4 T cell responses (96.7% and 82.1%), respectively. The geometric mean NAb IC50 and median frequencies of reactive CD4 subsets were consistently lower among CoronaVac-vaccinees than BNT162b2-vaccinees. CoronaVac did not induce measurable levels of nucleocapsid protein-specific IFN-γ+ CD4+ T or IFN-γ+ CD8+ T cells compared with unvaccinated. Against VOCs, NAb response rates and geometric mean IC50 titers against B.1.617.2 (Delta) and B.1.1.529 (Omicron) were significantly lower for CoronaVac (50%, 23.2 and 7.1%, <20) than BNT162b2 (94.1%, 131 and 58.8%, 35.0), respectively. Three months after vaccinations, NAbs to VOCs dropped near to detection limit, along with waning memory T cell responses, mainly among CoronaVac-vaccinees. INTERPRETATION: Our results indicate that vaccinees especially CoronaVac-vaccinees with significantly reduced NAbs may probably face higher risk to pandemic VOCs breakthrough infection. FUNDING: This study was supported by the Hong Kong Research Grants Council Collaborative Research Fund (C7156-20GF and C1134-20GF); the Wellcome Trust (P86433); the National Program on Key Research Project of China (Grant 2020YFC0860600, 2020YFA0707500 and 2020YFA0707504); Shenzhen Science and Technology Program (JSGG20200225151410198 and JCYJ20210324131610027); HKU Development Fund and LKS Faculty of Medicine Matching Fund to AIDS Institute; Hong Kong Innovation and Technology Fund, Innovation and Technology Commission and generous donation from the Friends of Hope Education Fund. Z.C.'s team was also partly supported by the Theme-Based Research Scheme (T11-706/18-N).


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Linfocitos T CD8-positivos , COVID-19/epidemiología , COVID-19/prevención & control , Hong Kong/epidemiología , Humanos , Inmunidad , SARS-CoV-2/genética , Vacunación
8.
EBioMedicine ; 75: 103762, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34942445

RESUMEN

BACKGROUND: Vaccines in emergency use are efficacious against COVID-19, yet vaccine-induced prevention against nasal SARS-CoV-2 infection remains suboptimal. METHODS: Since mucosal immunity is critical for nasal prevention, we investigated the efficacy of an intramuscular PD1-based receptor-binding domain (RBD) DNA vaccine (PD1-RBD-DNA) and intranasal live attenuated influenza-based vaccines (LAIV-CA4-RBD and LAIV-HK68-RBD) against SARS-CoV-2. FINDINGS: Substantially higher systemic and mucosal immune responses, including bronchoalveolar lavage IgA/IgG and lung polyfunctional memory CD8 T cells, were induced by the heterologous PD1-RBD-DNA/LAIV-HK68-RBD as compared with other regimens. When vaccinated animals were challenged at the memory phase, prevention of robust SARS-CoV-2 infection in nasal turbinate was achieved primarily by the heterologous regimen besides consistent protection in lungs. The regimen-induced antibodies cross-neutralized variants of concerns. Furthermore, LAIV-CA4-RBD could boost the BioNTech vaccine for improved mucosal immunity. INTERPRETATION: Our results demonstrated that intranasal influenza-based boost vaccination induces mucosal and systemic immunity for effective SARS-CoV-2 prevention in both upper and lower respiratory systems. FUNDING: This study was supported by the Research Grants Council Collaborative Research Fund, General Research Fund and Health and Medical Research Fund in Hong Kong; Outbreak Response to Novel Coronavirus (COVID-19) by the Coalition for Epidemic Preparedness Innovations; Shenzhen Science and Technology Program and matching fund from Shenzhen Immuno Cure BioTech Limited; the Health@InnoHK, Innovation and Technology Commission of Hong Kong; National Program on Key Research Project of China; donations from the Friends of Hope Education Fund; the Theme-Based Research Scheme.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Inmunización Secundaria , Vacunas contra la Influenza , SARS-CoV-2 , Vacunas de ADN , Administración Intranasal , Animales , COVID-19/genética , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Femenino , Células HEK293 , Humanos , Inmunidad Mucosa , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...