Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Malar J ; 17(1): 255, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986717

RESUMEN

BACKGROUND: As malaria transmission decreases, the proportion of infections that are asymptomatic at any given time increases. This poses a challenge for diagnosis as routinely used rapid diagnostic tests (RDTs) miss asymptomatic malaria cases with low parasite densities due to poor sensitivity. Yet, asymptomatic infections can contribute to onward transmission of malaria and therefore act as infectious reservoirs and perpetuate malaria transmission. This study compared the performance of RDTs to loop-mediated isothermal amplification (LAMP) in the diagnosis of malaria during reactive active case detection surveillance. METHODS: All reported malaria cases in the Engela Health District of Namibia were traced back to their place of residence and persons living within the four closest neighbouring houses to the index case (neighbourhood) were tested for malaria infection with RDTs and dried blood spots (DBS) were collected. LAMP and nested PCR (nPCR) were carried out on all RDTs and DBS. The same procedure was followed in randomly selected control neighbourhoods. RESULTS: Some 3151 individuals were tested by RDT, LAMP and nPCR. Sensitivity of RDTs and LAMP were 9.30 and 95.50%, respectively, and specificities were 99.27 and 99.92%, respectively, compared to nPCR. LAMP carried out on collected RDTs showed a sensitivity and specificity of 95.35 and 99.85% compared to nPCR carried out on DBS. There were 2 RDT samples that were negative by LAMP but the corresponding DBS samples were positive by PCR. CONCLUSION: The study showed that LAMP had the equivalent performance as nPCR for the identification of Plasmodium falciparum infection. Given its relative simplicity to implement over more complex and time-consuming methods, such as PCR, LAMP is particularly useful in elimination settings where high sensitivity and ease of operation are important.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Erradicación de la Enfermedad , Malaria Falciparum/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/aislamiento & purificación , Vigilancia de la Población/métodos , Namibia , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
2.
PLoS One ; 12(8): e0180845, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820883

RESUMEN

BACKGROUND: Reactive case detection (RACD) around passively detected malaria cases is a strategy to identify and treat hotspots of malaria transmission. This study investigated the unproven assumption on which this approach is based, that in low transmission settings, infections cluster over small scales. METHODS: A prospective case-control study was conducted between January 2013 and August 2014 in Ohangwena and Omusati regions in north central Namibia. Patients attending health facilities who tested positive by malaria rapid diagnostic test (RDT) (index cases) were traced back to their home. All occupants of index case households (n = 116 households) and surrounding households (n = 225) were screened for Plasmodium infection with a rapid diagnostic test (RDT) and loop mediated isothermal amplification (LAMP) and interviewed to identify risk factors. A comparison group of 286 randomly-selected control households was also screened, to compare infection levels of RACD and non-RACD households and their neighbours. Logistic regression was used to investigate spatial clustering of patent and sub-patent infections around index cases and to identify potential risk factors that would inform screening approaches and identify risk groups. Estimates of the impact of RACD on onward transmission to mosquitoes was made using previously published figures of infection rates. RESULTS: Prevalence of Plasmodium falciparum infection by LAMP was 3.4%, 1.4% and 0.4% in index-case households, neighbors of index case households and control households respectively; adjusted odds ratio 6.1 [95%CI 1.9-19.5] comparing case households versus control households. Using data from Engela, neighbors of cases had higher odds of infection [adjusted OR 5.0 95%CI 1.3-18.9] compared to control households. All infections identified by RDTs were afebrile and RDTs identified only a small proportion of infections in case (n = 7; 17%) and control (0%) neighborhoods. Based on published estimates of patent and sub-patent infectiousness, these results suggest that infections missed by RDTs during RACD would allow 50-71% of infections to mosquitoes to occur in this setting. CONCLUSION: Malaria infections cluster around passively detected cases. The majority of infections are asymptomatic and of densities below the limit of detection of current RDTs. RACD using standard RDTs are unlikely to detect enough malaria infections to dramatically reduce transmission. In low transmission settings such as Namibia more sensitive field diagnostics or forms of focal presumptive treatment should be tested as strategies to reduce malaria transmission.


Asunto(s)
Malaria/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Niño , Preescolar , Análisis por Conglomerados , Femenino , Humanos , Malaria/prevención & control , Masculino , Persona de Mediana Edad , Namibia/epidemiología , Factores de Riesgo
3.
Malar J ; 16(1): 70, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28187770

RESUMEN

BACKGROUND: A key component of malaria elimination campaigns is the identification and targeting of high risk populations. To characterize high risk populations in north central Namibia, a prospective health facility-based case-control study was conducted from December 2012-July 2014. Cases (n = 107) were all patients presenting to any of the 46 health clinics located in the study districts with a confirmed Plasmodium infection by multi-species rapid diagnostic test (RDT). Population controls (n = 679) for each district were RDT negative individuals residing within a household that was randomly selected from a census listing using a two-stage sampling procedure. Demographic, travel, socio-economic, behavioural, climate and vegetation data were also collected. Spatial patterns of malaria risk were analysed. Multivariate logistic regression was used to identify risk factors for malaria. RESULTS: Malaria risk was observed to cluster along the border with Angola, and travel patterns among cases were comparatively restricted to northern Namibia and Angola. Travel to Angola was associated with excessive risk of malaria in males (OR 43.58 95% CI 2.12-896), but there was no corresponding risk associated with travel by females. This is the first study to reveal that gender can modify the effect of travel on risk of malaria. Amongst non-travellers, male gender was also associated with a higher risk of malaria compared with females (OR 1.95 95% CI 1.25-3.04). Other strong risk factors were sleeping away from the household the previous night, lower socioeconomic status, living in an area with moderate vegetation around their house, experiencing moderate rainfall in the month prior to diagnosis and living <15 km from the Angolan border. CONCLUSIONS: These findings highlight the critical need to target malaria interventions to young male travellers, who have a disproportionate risk of malaria in northern Namibia, to coordinate cross-border regional malaria prevention initiatives and to scale up coverage of prevention measures such as indoor residual spraying and long-lasting insecticide nets in high risk areas if malaria elimination is to be realized.


Asunto(s)
Malaria/epidemiología , Malaria/transmisión , Viaje , Adolescente , Adulto , Angola , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Namibia/epidemiología , Estudios Prospectivos , Medición de Riesgo , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...