Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Org Chem ; 89(13): 9420-9426, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965937

RESUMEN

Bifunctional thiourea-based organocatalysts facilitate an enantioselective desymmetrization and Lossen rearrangement cascade reaction of N-sulfoxy meso-succinimides, resulting in the synthesis of cyclic ß-amino acid derivatives. This catalytic system was optimized for bicyclic and tricyclic succinimide substrates affording yields from 61-91% and up to 96:4 er. This reaction proceeds via the group selective addition of the primary alcohol nucleophile to an enantiotopic carbonyl group with sequential rearrangement of the intermediate O-sulfonyl hydroxamate ester.

2.
Eur J Med Chem ; 276: 116627, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38971050

RESUMEN

Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.

3.
Nat Commun ; 15(1): 5558, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977672

RESUMEN

Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.


Asunto(s)
Síndrome de Angelman , Modelos Animales de Enfermedad , Neuronas , Ubiquitina-Proteína Ligasas , Síndrome de Angelman/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Ratones , Neuronas/metabolismo , Humanos , Masculino , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Encéfalo/metabolismo
4.
Scand J Immunol ; : e13391, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773691

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

5.
Sci Adv ; 10(11): eadj6406, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489355

RESUMEN

There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.


Asunto(s)
Mycobacterium tuberculosis , Neoplasias , Quinazolinas , Tiofenos , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Humanos , Mycobacterium tuberculosis/metabolismo , Timidilato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo
6.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38293128

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

7.
ACS Infect Dis ; 10(2): 582-593, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38226592

RESUMEN

An impermeable outer membrane and multidrug efflux pumps work in concert to provide Gram-negative bacteria with intrinsic resistance against many antibiotics. These resistance mechanisms reduce the intracellular concentrations of antibiotics and render them ineffective. The natural product thiomarinol A combines holothin, a dithiolopyrrolone antibiotic, with marinolic acid A, a close analogue of mupirocin. The hybridity of thiomarinol A converts the mupirocin scaffold from inhibiting Gram-positive bacteria to inhibiting both Gram-positive and -negative bacteria. We found that thiomarinol A accumulates significantly more than mupirocin within the Gram-negative bacterium Escherichia coli, likely contributing to its broad-spectrum activity. Antibiotic susceptibility testing of E. coli mutants reveals that thiomarinol A overcomes the intrinsic resistance mechanisms that render mupirocin inactive. Structure-activity relationship studies suggest that the dithiolopyrrolone is a privileged moiety for improving the accumulation and antibiotic activity of the mupirocin scaffold without compromising binding to isoleucyl-tRNA synthetase. These studies also highlight that accumulation is required but not sufficient for antibiotic activity. Our work reveals a role of the dithiolopyrrolone moiety in overcoming intrinsic mupirocin resistance in E. coli and provides a starting point for designing dual-acting and high-accumulating hybrid antibiotics.


Asunto(s)
Antibacterianos , Mupirocina , Mupirocina/análogos & derivados , Antibacterianos/química , Mupirocina/farmacología , Mupirocina/química , Escherichia coli , Bacterias Gramnegativas
8.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808753

RESUMEN

Histone methyltransferases play essential roles in the organization and function of chromatin. They are also frequently mutated in human diseases including cancer1. One such often mutated methyltransferase, SETD2, associates co-transcriptionally with RNA polymerase II and catalyzes histone H3 lysine 36 trimethylation (H3K36me3) - a modification that contributes to gene transcription, splicing, and DNA repair2. While studies on SETD2 have largely focused on the consequences of its catalytic activity, the non-catalytic functions of SETD2 are largely unknown. Here we report a catalysis-independent function of SETD2 in maintaining nuclear lamina stability and genome integrity. We found that SETD2, via its intrinsically disordered N-terminus, associates with nuclear lamina proteins including lamin A/C, lamin B1, and emerin. Depletion of SETD2, or deletion of its N-terminus, resulted in widespread nuclear morphology abnormalities and genome stability defects that were reminiscent of a defective nuclear lamina. Mechanistically, the N-terminus of SETD2 facilitates the association of the mitotic kinase CDK1 with lamins, thereby promoting lamin phosphorylation and depolymerization required for nuclear envelope disassembly during mitosis. Taken together, our findings reveal an unanticipated link between the N-terminus of SETD2 and nuclear lamina organization that may underlie how SETD2 acts as a tumor suppressor.

9.
Proc Natl Acad Sci U S A ; 120(38): e2308338120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695919

RESUMEN

Allostery is a major driver of biological processes requiring coordination. Thus, it is one of the most fundamental and remarkable phenomena in nature, and there is motivation to understand and manipulate it to a multitude of ends. Today, it is often described in terms of two phenomenological models proposed more than a half-century ago involving only T(tense) or R(relaxed) conformations. Here, methyl-based NMR provides extensive detail on a dynamic T to R switch in the classical dimeric allosteric protein, yeast chorismate mutase (CM), that occurs in the absence of substrate, but only with the activator bound. Switching of individual subunits is uncoupled based on direct observation of mixed TR states in the dimer. This unique finding excludes both classic models and solves the paradox of a coexisting hyperbolic binding curve and highly skewed substrate-free T-R equilibrium. Surprisingly, structures of the activator-bound and effector-free forms of CM appear the same by NMR, providing another example of the need to account for dynamic ensembles. The apo enzyme, which has a sigmoidal activity profile, is shown to switch, not to R, but to a related high-energy state. Thus, the conformational repertoire of CM does not just change as a matter of degree depending on the allosteric input, be it effector and/or substrate. Rather, the allosteric model appears to completely change in different contexts, which is only consistent with modern ensemble-based frameworks.


Asunto(s)
Motivación , Polímeros , Saccharomyces cerevisiae
11.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37516912

RESUMEN

Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)-mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections.


Asunto(s)
Interferón Tipo I , Infecciones por Klebsiella , Células T Invariantes Asociadas a Mucosa , Neumonía Bacteriana , Humanos , Animales , Ratones , Klebsiella pneumoniae
12.
ACS Med Chem Lett ; 14(7): 970-976, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465309

RESUMEN

4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme for Mycobacterium tuberculosis (Mtb) survival and virulence and therefore an attractive target for a tuberculosis therapeutic. In this work, two modeling-informed approaches toward the isosteric replacement of the amidinourea moiety present in the previously reported PptT inhibitor AU 8918 are reported. Although a designed 3,5-diamino imidazole unexpectedly adopted an undesired tautomeric form and was inactive, replacement of the amidinourea moiety afforded a series of active PptT inhibitors containing 2,6-diaminopyridine scaffolds.

14.
J Transl Med ; 21(1): 428, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391777

RESUMEN

BACKGROUND: Upregulation of an RNA-binding protein HuR has been implicated in glomerular diseases. Herein, we evaluated whether it is involved in renal tubular fibrosis. METHODS: HuR was firstly examined in human kidney biopsy tissue with tubular disease. Second, its expression and the effect of HuR inhibition with KH3 on tubular injury were further assessed in a mouse model induced by a unilateral renal ischemia/reperfusion (IR). KH3 (50 mg kg-1) was given daily via intraperitoneal injection from day 3 to 14 after IR. Last, one of HuR-targeted pathways was examined in cultured proximal tubular cells. RESULTS: HuR significantly increases at the site of tubular injury both in progressive CKD in patients and in IR-injured kidneys in mice, accompanied by upregulation of HuR targets that are involved in inflammation, profibrotic cytokines, oxidative stress, proliferation, apoptosis, tubular EMT process, matrix remodeling and fibrosis in renal tubulointerstitial fibrosis. KH3 treatment reduces the IR-induced tubular injury and fibrosis, accompanied by the remarkable amelioration in those involved pathways. A panel of mRNA array further revealed that 519 molecules in mouse kidney following IR injury changed their expression and 71.3% of them that are involved in 50 profibrotic pathways, were ameliorated when treated with KH3. In vitro, TGFß1 induced tubular HuR cytoplasmic translocation and subsequent tubular EMT, which were abrogated by KH3 administration in cultured HK-2 cells. CONCLUSIONS: These results suggest that excessive upregulation of HuR contributes to renal tubulointerstitial fibrosis by dysregulating genes involved in multiple profibrotic pathways and activating the TGFß1/HuR feedback circuit in tubular cells. Inhibition of HuR may have therapeutic potential for renal tubular fibrosis.


Asunto(s)
Enfermedades Renales , Humanos , Animales , Ratones , Riñón , Apoptosis , Citocinas , Citoplasma
15.
Mol Oncol ; 17(10): 1962-1980, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357618

RESUMEN

Chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC); however, chemoresistance compromises its efficacy. The RNA-binding protein Hu antigen R (HuR) could be a potential therapeutic target to enhance the chemotherapy efficacy. HuR is known to mainly stabilize its target mRNAs, and/or promote the translation of encoded proteins, which are implicated in multiple cancer hallmarks, including chemoresistance. In this study, a docetaxel-resistant cell subline (231-TR) was established from the human TNBC cell line MDA-MB-231. Both the parental and resistant cell lines exhibited similar sensitivity to the small molecule functional inhibitor of HuR, KH-3. Docetaxel and KH-3 combination therapy synergistically inhibited cell proliferation in TNBC cells and tumor growth in three animal models. KH-3 downregulated the expression levels of HuR targets (e.g., ß-Catenin and BCL2) in a time- and dose-dependent manner. Moreover, KH-3 restored docetaxel's effects on activating Caspase-3 and cleaving PARP in 231-TR cells, induced apoptotic cell death, and caused S-phase cell cycle arrest. Together, our findings suggest that HuR is a critical mediator of docetaxel resistance and provide a rationale for combining HuR inhibitors and chemotherapeutic agents to enhance chemotherapy efficacy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Proteínas de Unión al ARN , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
17.
J Med Chem ; 66(3): 2032-2053, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36690437

RESUMEN

The RNA-binding protein Hu antigen R (HuR) is a post-transcriptional regulator critical in several types of diseases, including cancer, making it a promising therapeutic target. We have identified small-molecule inhibitors of HuR through a screening approach used in combination with fragment analysis. A total of 36 new compounds originating from fragment linking or structural optimization were studied to establish structure-activity relationships in the set. Two top inhibitors, 1c and 7c, were further validated by binding assays and cellular functional assays. Both block HuR function by directly binding to the RNA-binding pocket, inhibit cancer cell growth dependence of HuR, and suppress cancer cell invasion. Intraperitoneal administration of inhibitor 1c inhibits tumor growth as a single agent and shows a synergistic effect in combination with chemotherapy docetaxel in breast cancer xenograft models. Mechanistically, 1c interferes with the HuR-TGFB/THBS1 axis.


Asunto(s)
Neoplasias , Humanos , Xenoinjertos , Transformación Celular Neoplásica , Línea Celular Tumoral
18.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711986

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.

19.
Immunohorizons ; 7(1): 116-124, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651819

RESUMEN

Mucosal-associated invariant T (MAIT) cells are promising innate-like lymphocytes with potential for use in anti-tumor immunotherapy. Existing MAIT cell expansion protocols are associated with potentially decremental phenotypic changes, including increased frequency of CD4+ MAIT cells and higher inhibitory receptor expression. In this study, we compared the effect on expansion of human MAIT cells of a serum replacement, Physiologix XF SR (Phx), with traditional serum FBS for supplementing RPMI 1640 media. Using flow cytometry, we found that Phx supported a significantly higher proliferative capacity for MAIT cells and resulted in a lower frequency of CD4+ MAIT cells, which have been associated with reduced Th1 effector and cytolytic functions. We saw that culturing MAIT cells in Phx led to better survival of MAIT cells and lower frequency of PD-1+ MAIT cells than FBS-supplemented media. Functionally, we saw that Phx supplementation was associated with a higher frequency of IFN-γ+ MAIT cells after stimulation with Escherichia coli than FBS-supplemented RPMI. In conclusion, we show that MAIT cells cultured in Phx have higher proliferative capacity, lower expression of inhibitory receptors, and higher capacity to produce IFN-γ after E. coli stimulation than FBS-supplemented RPMI. This work shows that expanding MAIT cells with Phx compared with FBS-supplemented RPMI results in a more functionally desirable MAIT cell for future anti-tumor immunotherapy.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Células T Invariantes Asociadas a Mucosa/metabolismo , Escherichia coli , Interferón gamma/metabolismo , Citometría de Flujo
20.
J Mol Cell Cardiol ; 174: 38-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372279

RESUMEN

Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFß-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFß-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFß treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFß. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFß, in part through post-transcriptional regulation of Wisp1.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Proteína 1 Similar a ELAV , Miofibroblastos , Factor de Crecimiento Transformador beta , Animales , Ratones , Colágeno/metabolismo , Fibroblastos/metabolismo , Corazón , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...