Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8418, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110448

RESUMEN

Marine sedimentary rocks deposited across the Neoproterozoic Cryogenian Snowball interval, ~720-635 million years ago, suggest that post-Snowball fertilization of shallow continental margin seawater with phosphorus accelerated marine primary productivity, ocean-atmosphere oxygenation, and ultimately the rise of animals. However, the mechanisms that sourced and delivered bioavailable phosphate from land to the ocean are not fully understood. Here we demonstrate a causal relationship between clay mineral production by the melting Sturtian Snowball ice sheets and a short-lived increase in seawater phosphate bioavailability by at least 20-fold and oxygenation of an immediate post-Sturtian Snowball ocean margin. Bulk primary sediment inputs and inferred dissolved seawater phosphate dynamics point to a relatively low marine phosphate inventory that limited marine primary productivity and seawater oxygenation before the Sturtian glaciation, and again in the later stages of the succeeding interglacial greenhouse interval.

2.
Geobiology ; 19(2): 105-124, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369021

RESUMEN

The Ediacaran period coincides with the emergence of ancestral animal lineages and cyanobacteria capable of thriving in nutrient deficient oceans which together with photosynthetic eukaryotic dominance, culminated in the rapid oxygenation of the Ediacaran atmosphere. However, ecological evidence for the colonization of the Ediacaran terrestrial biosphere by photosynthetic communities and their contribution to the oxygenation of the biosphere at this time is very sparse. Here, we expand the repertoire of Ediacaran habitable environments to a specific microbial community that thrived in an extreme alkaline volcanic lake 571 Myr ago in the Anti-atlas of Morocco. The microbial fabrics preserve evidence of primary growth structures, comprised of two main microbialitic units, with the lower section consisting of irregular and patchy thrombolytic mesoclots associated with composite microbialitic domes. Calcirudite interbeds, dominated by wave-rippled sandy calcarenites and stromatoclasts, fill the interdome troughs and seal the dome tops. A meter-thick epiclastic stromatolite bed grading upwards from a dominantly flat to wavy laminated base, transitions into low convex laminae consisting of decimeter to meter-thick dome-shaped stromatolitic columns, overlies the thrombolitic and composite microbialitic facies. Microbialitic beds constructed during periods of limited clastic input, and underlain by coarse-grained microbialite-derived clasts and by the wave-rippled calcarenites, suggest high-energy events associated with lake expansion. High-resolution microscopy revealed spherulitic aggregates and structures reminiscent of coccoidal microbial cell casts and mineralized extra-polymeric substances (EPS). The primary fabrics and multistage diagenetic features, represented by active carbonate production, photosynthesizing microbial communities, photosynthetic gas bubbles, gas escape structures, and tufted mats, suggest specialized oxygenic photosynthesizers thriving in alkaline volcanic lakes, contributed toward oxygen variability in the Ediacaran terrestrial biosphere.


Asunto(s)
Cianobacterias , Microbiota , Animales , Sedimentos Geológicos , Lagos , Marruecos
3.
Nat Commun ; 10(1): 2670, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209248

RESUMEN

Illitisation requires potassium incorporation into a smectite precursor, a process akin to reverse weathering. However, it remains unclear whether microbes facilitate K+ uptake to the sediments and whether illitisation was important in the geological past. The 2.1 billion-year-old Francevillian Series of Gabon has been shown to host mat-related structures (MRS) and, in this regard, these rocks offer a unique opportunity to test whether ancient microbes induced illitisation. Here, we show high K content confined to illite particles that are abundant in the facies bearing MRS, but not in the host sandstone and black shale. This observation suggests that microbial biofilms trapped K+ from the seawater and released it into the pore-waters during respiration, resulting in illitisation. The K-rich illite developed exclusively in the fossilized MRS thus provides a new biosignature for metasediments derived from K-feldspar-depleted rocks that were abundant crustal components on ancient Earth.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/química , Potasio/metabolismo , Agua de Mar/química , Tiempo (Meteorología) , Biopelículas , Planeta Tierra , Fósiles , Gabón , Sedimentos Geológicos/análisis , Minerales/análisis , Minerales/química , Potasio/análisis , Silicatos/química
5.
Proc Natl Acad Sci U S A ; 116(9): 3431-3436, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808737

RESUMEN

Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [Han TM, Runnegar B (1992) Science 257:232-235; Knoll et al. (2006) Philos Trans R Soc Lond B 361:1023-1038], Stirling biota [Bengtson S et al. (2007) Paleobiology 33:351-381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1-Ga Francevillian series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and suggest that the structures underwent fossilization during early diagenesis close to the sediment-water interface. The string-shaped structures are up to 6 mm across and extend up to 170 mm through the strata. Morphological and 3D tomographic reconstructions suggest that the producer may have been a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources. A possible modern analog is the aggregation of amoeboid cells into a migratory slug phase in cellular slime molds at times of starvation. This unique ecologic window established in an oxygenated, shallow-marine environment represents an exceptional record of the biosphere following the crucial changes that occurred in the atmosphere and ocean in the aftermath of the great oxidation event (GOE).


Asunto(s)
Evolución Biológica , Fósiles , Sedimentos Geológicos/química , Oxígeno/química , Atmósfera , Biota/fisiología , Gabón , Oxidación-Reducción
6.
Geobiology ; 16(5): 476-497, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29923673

RESUMEN

The 2.1-billion-year-old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well-preserved mat-related structures, comprising "elephant-skin" textures, putative macro-tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, "kinneyia" structures, linear patterns and nodule-like structures. A combination of petrographic analyses, scanning electron microscopy, Raman spectroscopy and organic elemental analyses of carbon-rich laminae and microtexture, indicate a biological origin for these structures. The observed microtextures encompass oriented grains, floating silt-sized quartz grains, concentrated heavy minerals, randomly oriented clays, wavy-crinkly laminae and pyritized structures. Based on comparisons with modern analogues, as well as an average δ13 C organic matter (Corg ) composition of -32.94 ± 1.17‰ (1 standard deviation, SD) with an outlier of -41.26‰, we argue that the mat-related structures contain relicts of multiple carbon pathways including heterotrophic recycling of photosynthetically derived Corg . Moreover, the relatively close association of the macroscopic fossil assemblages to the microbial mats may imply that microbial communities acted as potential benthic O2 oases linked to oxyphototrophic cyanobacterial mats and grazing grounds. In addition, the mat's presence likely improved the preservation of the oldest large colonial organisms, as they are known to strongly biostabilize sediments. Our findings highlight the oldest community assemblage of microscopic and macroscopic biota in the aftermath of the "Great Oxidation Event," widening our understanding of biological organization during Earth's middle age.


Asunto(s)
Fósiles/microbiología , Biota/fisiología , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Sedimentos Geológicos/microbiología , Microscopía Electrónica de Rastreo , Compuestos Orgánicos/metabolismo , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...