Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6793, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880210

RESUMEN

Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.

2.
Phys Rev E ; 106(2-2): 025001, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110010

RESUMEN

In a heterogeneous medium, the wave field can be decomposed as an infinite series known as the Born expansion. Each term of the Born expansion corresponds to a scattering order, it is thus theoretically possible to discriminate single and multiple scattering contribution to the field. Experimentally, what is actually measured is the total field in which all scattering orders interfere. Conventional imaging methods usually rely on the assumption that the multiple scattering contribution can be disregarded. In a back-scattering configuration, this assumption is valid for small depths, and begins to fail for depths larger than the scattering mean-free path ℓ_{s}. It is therefore a key issue to estimate the relative amount of single and multiple scattering in experimental data. To this end, a single-scattering estimator ρ[over ̂] computed from the reflection matrix has been introduced in order to assess the weight of single scattering in the backscattered wave field. In this paper, the meaning of this estimator is investigated and a particular attention is given to recurrent scattering. In a diffraction-limited experiment, a multiple scattering sequence is said to be recurrent if the first and last scattering events occur in the same resolution cell. Recurrent scattering is shown to be responsible for correlations between single scattering and higher scattering orders of the Born expansion, inducing a bias to the estimator ρ[over ̂] that should rather be termed confocal scattering ratio. Interestingly, a more robust estimator is built by projecting the reflection matrix in a focused basis. The argument is sustained by numerical simulations as well as ultrasonic data obtained around 1.5 MHz in a model medium made of nylon rods immersed in water. From a more general perspective, this work raises fundamental questions about the impact of recurrent scattering on wave imaging.

3.
IEEE Trans Med Imaging ; 41(12): 3907-3920, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976836

RESUMEN

This is the first article in a series of two dealing with a matrix approach for aberration quantification and correction in ultrasound imaging. Advanced synthetic beamforming relies on a double focusing operation at transmission and reception on each point of the medium. Ultrasound matrix imaging (UMI) consists in decoupling the location of these transmitted and received focal spots. The response between those virtual transducers form the so-called focused reflection matrix that actually contains much more information than a confocal ultrasound image. In this paper, a time-frequency analysis of this matrix is performed, which highlights the single and multiple scattering contributions as well as the impact of aberrations in the monochromatic and broadband regimes. Interestingly, this analysis enables the measurement of the incoherent input-output point spread function at any pixel of this image. A fitting process enables the quantification of the single scattering, multiple scattering and noise components in the image. From the single scattering contribution, a focusing criterion is defined, and its evolution used to quantify the amount of aberration throughout the ultrasound image. In contrast to the state-of-the-art coherence factor, this new indicator is robust to multiple scattering and electronic noise, thereby providing a contrasted map of the focusing quality at a much better transverse resolution. After a validation of the proof-of-concept based on time-domain simulations, UMI is applied to the in-vivo study of a human calf. Beyond this specific example, UMI opens a new route for speed-of-sound and scattering quantification in ultrasound imaging.


Asunto(s)
Ruido , Transductores , Humanos , Ultrasonografía/métodos , Fantasmas de Imagen
4.
IEEE Trans Med Imaging ; 41(12): 3921-3938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976837

RESUMEN

This is the second article in a series of two which report on a matrix approach for ultrasound imaging in heterogeneous media. This article describes the quantification and correction of aberration, i.e. the distortion of an image caused by spatial variations in the medium speed-of-sound. Adaptive focusing can compensate for aberration, but is only effective over a restricted area called the isoplanatic patch. Here, we use an experimentally-recorded matrix of reflected acoustic signals to synthesize a set of virtual transducers. We then examine wave propagation between these virtual transducers and an arbitrary correction plane. Such wave-fronts consist of two components: (i) An ideal geometric wave-front linked to diffraction and the input focusing point, and; (ii) Phase distortions induced by the speed-of-sound variations. These distortions are stored in a so-called distortion matrix, the singular value decomposition of which gives access to an optimized focusing law at any point. We show that, by decoupling the aberrations undergone by the outgoing and incoming waves and applying an iterative strategy, compensation for even high-order and spatially-distributed aberrations can be achieved. After a numerical validation of the process, ultrasound matrix imaging (UMI) is applied to the in-vivo imaging of a gallbladder. A map of isoplanatic modes is retrieved and is shown to be strongly correlated with the arrangement of tissues constituting the medium. The corresponding focusing laws yield an ultrasound image with drastically improved contrast and transverse resolution. UMI thus provides a flexible and powerful route towards computational ultrasound.


Asunto(s)
Acústica , Transductores , Ultrasonografía/métodos , Fantasmas de Imagen
5.
Ultrasound Med Biol ; 48(8): 1484-1495, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568594

RESUMEN

We succeeded in freeze-drying monodisperse microbubbles without degrading their performance, that is, their monodispersity in size and echogenicity. We used microfluidic technology to generate cryoprotected highly monodisperse microbubbles (coefficient of variation [CV] <5%). By using a novel retrieval technique, we were able to freeze-dry the microbubbles and resuspend them without degradation, that is, keeping their size distribution narrow (CV <6%). Acoustic characterization performed in two geometries (a centimetric cell and a millichannel) revealed that the resuspended bubbles conserved the sharpness of the backscattered resonance peak, leading to CVs ranging between 5% and 10%, depending on the geometry. As currently observed with monodisperse bubbles, the peak amplitudes are one order of magnitude higher than those of commercial ultrasound contrast agents. Our work thus solves the question of storage and transportation of highly monodisperse bubbles. This work might open pathways toward novel clinical non-invasive measurements, such as local pressure, impossible to carry out with the existing commercial ultrasound contrast agents.


Asunto(s)
Medios de Contraste , Microburbujas , Acústica , Microfluídica , Ultrasonografía/métodos
6.
Sci Rep ; 11(1): 23901, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903769

RESUMEN

We report on experimental and numerical implementations of devices based on the negative refraction of elastic guided waves, the so-called Lamb waves. Consisting in plates of varying thickness, these devices rely on the concept of complementary media, where a particular layout of negative index media can cloak an object with its anti-object or trap waves around a negative corner. The diffraction cancellation operated by negative refraction is investigated by means of laser ultrasound experiments. However, unlike original theoretical predictions, these intriguing wave phenomena remain, nevertheless, limited to the propagating component of the wave-field. To go beyond the diffraction limit, negative refraction is combined with the concept of metalens, a device converting the evanescent components of an object into propagating waves. The transport of an evanescent wave-field is then possible from an object plane to a far-field imaging plane. Twenty years after Pendry's initial proposal, this work thus paves the way towards an elastic superlens.

7.
Opt Express ; 29(14): 22044-22065, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265978

RESUMEN

We report on a theoretical model for image formation in full-field optical coherence tomography (FFOCT). Because the spatial incoherence of the illumination acts as a virtual confocal pinhole in FFOCT, its imaging performance is equivalent to a scanning time-gated coherent confocal microscope. In agreement with optical experiments enabling a precise control of aberrations, FFOCT is shown to have nearly twice the resolution of standard imaging at moderate aberration level. Beyond a rigorous study on the sensitivity of FFOCT with respect to aberrations, this theoretical model paves the way towards an optimized design of adaptive optics and computational tools for high-resolution and deep imaging of biological tissues.


Asunto(s)
Modelos Teóricos , Óptica y Fotónica , Tomografía de Coherencia Óptica/métodos , Humanos , Microscopía Confocal/métodos
8.
Acta Psychol (Amst) ; 218: 103358, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34216982

RESUMEN

Intellectually gifted children tend to demonstrate especially high working memory capacity, an ability that holds a critical role in intellectual functioning. What could explain the differences in working memory performance between intellectually gifted and nongifted children? We investigated this issue by measuring working memory capacity with complex spans in a sample of 55 gifted and 55 nongifted children. Based on prior studies, we expected the higher working memory capacity of intellectually gifted children to be driven by more effective executive control, as measured using the Attention Network Test. The findings confirmed that intellectually gifted children had higher working memory capacity than typical children, as well as more effective executive attention. Surprisingly, however, working memory differences between groups were not mediated by differences in executive attention. Instead, it appears that gifted children resolve problems faster in the processing phase of the working memory task, which leaves them more time to refresh to-be-remembered items. This faster problem solving speed mediated their advantage in working memory capacity. Importantly, this effect was specific to speed on complex problems: low-level processing speed, as measured with the Attention Network Test, did not contribute to the higher working memory capacity of gifted children.


Asunto(s)
Niño Superdotado , Niño , Cognición , Función Ejecutiva , Humanos , Memoria a Corto Plazo , Solución de Problemas
9.
Brain Behav ; 11(8): e02148, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288569

RESUMEN

INTRODUCTION: Intellectually gifted children have higher performance in many domains of attention than intellectually average children. However, these empirical findings are not consistent in the literature. Few studies investigated the characteristics of alerting, orienting, and executive control networks in intellectually gifted children. The aim of our study was to investigate their characteristics of attentional abilities compared to intellectually average children. METHOD: Fifty-five intellectually gifted children (age range 8-14 years old) were compared to 55 intellectually average children (age range 8-14 years old) using the Attention Network Test (ANT) to assess these three attentional constructs. RESULTS: Intellectually gifted children made fewer errors than intellectually average children in the processing of the ANT. In terms of attention network scores, they also outperformed intellectually average children in executive control only. CONCLUSION: Intellectually gifted children do not differ from intellectual average children in terms of the speed of processing in a speeded task such as ANT, but they stand out in terms of accuracy of processing. Intellectually gifted children have better ability to focus volitionally in order to solve a simple perceptual conflict than intellectually average children.


Asunto(s)
Niño Superdotado , Adolescente , Niño , Función Ejecutiva , Humanos , Tiempo de Reacción
10.
Sci Adv ; 6(30): eaay7170, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32923603

RESUMEN

In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations and multiple scattering can strongly degrade the image resolution and contrast. On the basis of a dynamic correction of the incident and/or reflected wavefronts, adaptive optics has been used to compensate for those aberrations. However, it only applies to spatially invariant aberrations or to thin aberrating layers. Here, we propose a global and noninvasive approach based on the distortion matrix concept. This matrix basically connects any focusing point of the image with the distorted part of its wavefront in reflection. A singular value decomposition of the distortion matrix allows to correct for high-order aberrations and forward multiple scattering over multiple isoplanatic modes. Proof-of-concept experiments are performed through biological tissues including a turbid cornea. We demonstrate a Strehl ratio enhancement up to 2500 and recover a diffraction-limited resolution until a depth of 10 scattering mean free paths.

11.
Proc Natl Acad Sci U S A ; 117(26): 14645-14656, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32522873

RESUMEN

Focusing waves inside inhomogeneous media is a fundamental problem for imaging. Spatial variations of wave velocity can strongly distort propagating wave fronts and degrade image quality. Adaptive focusing can compensate for such aberration but is only effective over a restricted field of view. Here, we introduce a full-field approach to wave imaging based on the concept of the distortion matrix. This operator essentially connects any focal point inside the medium with the distortion that a wave front, emitted from that point, experiences due to heterogeneities. A time-reversal analysis of the distortion matrix enables the estimation of the transmission matrix that links each sensor and image voxel. Phase aberrations can then be unscrambled for any point, providing a full-field image of the medium with diffraction-limited resolution. Importantly, this process is particularly efficient in random scattering media, where traditional approaches such as adaptive focusing fail. Here, we first present an experimental proof of concept on a tissue-mimicking phantom and then, apply the method to in vivo imaging of human soft tissues. While introduced here in the context of acoustics, this approach can also be extended to optical microscopy, radar, or seismic imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Acústica , Análisis de Fourier , Humanos , Pierna/diagnóstico por imagen , Fantasmas de Imagen , Dispersión de Radiación
12.
Front Psychol ; 10: 2187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649576

RESUMEN

Eye-tracking studies have revealed a specific visual exploration style characterizing individuals with autism spectrum disorder (ASD). The aim of this study is to investigate the impact of stimulus type (static vs. dynamic) on visual exploration in children with ASD. Twenty-eight children with ASD, 28 children matched for developmental communication age, and 28 children matched for chronological age watched a video and a series of photos involving the same joint attention scene. For each stimulus, areas of interest (AOI) were determined based on Voronoi diagrams, which were defined around participants' fixation densities, defined by the mean shift algorithm. To analyze the eye-tracking data on visual exploration, we used a method for creating AOI a posteriori, based on participants' actual fixations. The results showed the value of both kinds of stimuli. The photos allowed for the identification of more precise AOI and showed similarities in exploration between ASD and typical children. On the other hand, video revealed that, among ASD children only, there are few differences in the way they look at the target depending on the deictic cue used. This raises questions regarding their understanding of a joint attention bid recorded on a video. Finally, whatever the stimulus, pointing seems to be the most important element for children looking at the target.

13.
Sci Rep ; 9(1): 2135, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765745

RESUMEN

The propagation of waves in complex media can be harnessed either by taming the incident wave-field impinging on the medium or by forcing waves along desired paths through its careful design. These two alternative strategies have given rise to fascinating concepts such as time reversal or negative refraction. Here, we show how these two processes are intimately linked through the negative reflection phenomenon. A negative reflecting mirror converts a wave of positive phase velocity into its negative counterpart and vice versa. In this article, we experimentally demonstrate this phenomenon with elastic waves in a 2D billiard and in a disordered plate by means of laser interferometry. Despite the complexity of such configurations, the negatively reflected wave field focuses back towards the initial source location, thereby mimicking a phase conjugation operation while being a fully passive process. The super-focusing capability of negative reflection is also highlighted in a monochromatic regime. The negative reflection phenomenon is not restricted to guided elastic waves since it can occur in zero-gap systems such as photonic crystals, chiral metamaterials or graphene. Negative reflection can thus become a tool of choice for the control of waves in all fields of wave physics.

14.
Front Psychol ; 9: 1759, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319485

RESUMEN

Improvisational theater (improv) is supposed to have an impact on cognitive processes (divergent thinking, flexibility, language, memory, problem solving, and co-construction), academic performance, and everyday life in many ways. However, little research studied on the psychological impact of improv, with some results highlighting a divergent thinking enhancement in children and adults, but not with teenagers, one of the most important age groups to practice improv. Therefore, this study aims to assess divergent thinking for middle school students before and after an 11-weeks session compared to a control group with a sport practice. The Alternative Uses Task (AUT) was used before and after the session for both groups to evaluate divergent thinking. The improv group had better performance in originality, flexibility and gave less prototypical items after the improv sessions compared to before, while the control group performance was similar before and after. Our results suggest that improv helps teenagers' divergent thinking to improve, not only with experimental games in the lab context but also after ecological sessions. We urge scientists to study in depth psychological impacts of improvisational theater and applied improvisation, for a better understanding of improv and as a model to study embodied cognition.

15.
Front Psychol ; 9: 830, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892253

RESUMEN

Intellectual giftedness is usually defined in terms of having a very high Intellectual Quotient (IQ). The intellectual capacity is assessed by a standardized test such as the Wechsler Intelligence Scale for Children (WISC). However, the identification of intellectually gifted children (IGC) often remains time-consuming. A short-form WISC can be used as a screening instrument. The practitioners and researchers in this field can then make a more in-depth evaluation of the IGC's cognitive and socioemotional characteristics if needed. The aim of our study is thus to determine the best short tests, in terms of their psychometric qualities, for the identification of IGC. The current study is composed of three-step analyses. Firstly, we created nine IQs short forms (IQSF) with 2-subtests, and nine IQSF with 4-subtests from the WISC-IV (Wechsler, 2005). Secondly, we estimated psychometric parameters (i.e., reliability and validity) from empirical and simulated dataset with WISC-IV. The difference in the estimation of psychometric qualities of each IQSF from the simulated data is very close to those derived from empirical data. We thus selected the three best IQSF based on these psychometrics parameters estimated from simulated datasets. For each selected short form of the WISC-IV, we estimated the screening quality in our sample of IGC. Thirdly, we created IQSF with 2- and 4-subtests from the WISC-V (Wechsler, 2016) with simulated dataset. We then highlighted the three best short forms of WISC-V based on the estimated psychometric parameters. The results are interpreted in terms of validity, reliability and screening quality of IGC. In spite of the important changes in the WISC-V, our findings show that the 2-subtest form, Similitaries + Matrix Reasoning, and 4-subtest form, Similitaries + Vocabulary + Matrix Reasoning + Block Design, are the most efficient to identify the IGC at the two recent versions of Wechsler scales. Finally, we discuss the advantages and drawbacks of a brief assessment of intellectual aptitudes for the identification of the IGC.

16.
Behav Res Methods ; 50(3): 910-921, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28643158

RESUMEN

Working memory tasks designed for children usually present trials in order of ascending difficulty, with testing discontinued when the child fails a particular level. Unfortunately, this procedure comes with a number of issues, such as decreased engagement from high-ability children, vulnerability of the scores to temporary mind-wandering, and large between-subjects variations in number of trials, testing time, and proactive interference. To circumvent these problems, the goal of the present study was to demonstrate the feasibility of assessing working memory using an adaptive testing procedure. The principle of adaptive testing is to dynamically adjust the level of difficulty as the task progresses to match the participant's ability. We used this method to develop an adaptive complex span task (the ACCES) comprising verbal and visuo-spatial subtests. The task presents a fixed number of trials to all participants, allows for partial credit scoring, and can be used with children regardless of ability level. The ACCES demonstrated satisfying psychometric properties in a sample of 268 children aged 8-13 years, confirming the feasibility of using adaptive tasks to measure working memory capacity in children. A free-to-use implementation of the ACCES is provided.


Asunto(s)
Escala de Evaluación de la Conducta , Memoria a Corto Plazo , Adolescente , Niño , Femenino , Humanos , Masculino , Psicometría
17.
J Acoust Soc Am ; 141(1): 624, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28147595

RESUMEN

Ultrasonic evaluation of coarse-grain materials generates multiple scattering at high frequency and large depth. Recent academic experiments with array probes showed the ability of a random matrix method [multiple scattering filter (MSF)] to reduce multiple scattering, hence improving detection. Here, MSF is applied to an industrial nickel-based alloy with coarse-grain structure. Two samples with average grain sizes 90 ± 60 µm and 750 ± 400 µm are inspected with wide-band 64-element arrays at central frequencies 2, 3, and 5 MHz. They contain cylindrical through-holes (1-mm radius) at various depths. The array transfer matrix is recorded and post-processed both in the flawless area and for eleven positions above each defect, which allows for a statistical analysis. MSF is compared with two conventional imaging techniques: the total focusing method (TFM) and the decomposition of the time-reversal operator (DORT). Several parameters to assess the performance of detection techniques are proposed and discussed. The results show the benefit of MSF, especially at high frequencies and for deep defects: at 5 MHz and 70 mm depth, i.e., more than three scattering mean-free paths, the detection rate for MSF ranges between 55% and 100% while it is found to be 0% both for TFM and DORT.

18.
Sci Adv ; 2(11): e1600370, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27847864

RESUMEN

Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.


Asunto(s)
Modelos Teóricos , Tomografía de Coherencia Óptica
19.
J Acoust Soc Am ; 140(1): 591, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27475181

RESUMEN

The paper studies the interaction of Lamb waves with the free edge of a plate. The reflection coefficients of a Lamb mode at a plate free edge are calculated using a semi-analytical method, as a function of frequency and angle of incidence. The conversion between forward and backward Lamb modes is thoroughly investigated. It is shown that at the zero-group velocity (ZGV) frequency, the forward S1 Lamb mode fully converts into the backward S2b Lamb mode at normal incidence. Besides, this conversion is very efficient over most of the angular spectrum and remains dominant at frequencies just above the ZGV-point. This effect is observed experimentally on a Duralumin plate. First, the S1 Lamb mode is selectively generated using a transducer array, second the S2b mode is excited using a single circular transducer. The normal displacement field is probed with an interferometer. The free edge is shown to retro-focus the incident wave at different depths depending on the wave number mismatch between the forward and backward propagating modes. In the vicinity of the ZGV-point, wave numbers coincide and the wave is retro-reflected on the source. In this frequency range, the free edge acts as a perfect phase conjugating mirror.

20.
Phys Rev Lett ; 114(2): 023901, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25635547

RESUMEN

We report on the passive measurement of time-dependent Green's functions in the optical frequency domain with low-coherence interferometry. Inspired by previous studies in acoustics and seismology, we show how the correlations of a broadband and incoherent wave field can directly yield the Green's functions between scatterers of a complex medium. Both the ballistic and multiple scattering components of the Green's function are retrieved. This approach opens important perspectives for optical imaging and characterization in complex scattering media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...