Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nanotechnology ; 26(22): 225203, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25969389

RESUMEN

Investigations of geometric frustrations in magnetic antidot lattices have led to the observation of interesting phenomena like spin-ice and magnetic monopoles. By using highly focused magneto-optical Kerr effect measurements and x-ray microscopy with magnetic contrast we deduce that geometrical frustration in these nanostructured thin film systems also leads to an out-of-plane magnetization from a purely in-plane applied magnetic field. For certain orientations of the antidot lattice, formation of perpendicular magnetic domains has been found with a size of several µm that may be used for an in-plane/out-of-plane transducer.

3.
Sci Rep ; 5: 8871, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25747456

RESUMEN

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.

4.
Rev Sci Instrum ; 85(2): 023901, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593373

RESUMEN

First-order reversal curves (FORC) are a powerful method for magnetic sample characterization, separating all magnetic states of an investigated system according to their coercivity and internal magnetic interactions. A major drawback of using measurement techniques like VSM or SQUID, typically applied for FORC acquisition, is the long measurement time, limiting the resolution and the number of measurements due to time constraints. Faster techniques like MOKE result in problems regarding measurement stability over the curse of the acquisition of many minor loops, due to drift and non-absolute magnetization values. Here, we present an approach using a specialized field shape providing two anchor points for each minor loop for applying the magneto-optical Kerr effect (MOKE) technique to FORC measurements. This results in a high field resolution while keeping the total acquisition time to only a few minutes. MOKE FORC measurements are exemplarily applied to a simple permalloy film, an exchange-bias system, and a Gd/Fe multilayer system with perpendicular magnetic anisotropy, showcasing the versatility of the method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...