Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Scand J Med Sci Sports ; 30(9): 1615-1631, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32403173

RESUMEN

When exercising with a small muscle mass, the mass-specific O2 delivery exceeds the muscle oxidative capacity resulting in a lower O2 extraction compared with whole-body exercise. We elevated the muscle oxidative capacity and tested its impact on O2 extraction during small muscle mass exercise. Nine individuals conducted six weeks of one-legged knee extension (1L-KE) endurance training. After training, the trained leg (TL) displayed 45% higher citrate synthase and COX-IV protein content in vastus lateralis and 15%-22% higher pulmonary oxygen uptake ( V ˙ O 2 peak ) and peak power output ( W ˙ peak ) during 1L-KE than the control leg (CON; all P < .05). Leg O2 extraction (catheters) and blood flow (ultrasound Doppler) were measured while both legs exercised simultaneously during 2L-KE at the same submaximal power outputs (real-time feedback-controlled). TL displayed higher O2 extraction than CON (main effect: 1.7 ± 1.6% points; P = .010; 40%-83% of W ˙ peak ) with the largest between-leg difference at 83% of W ˙ peak (O2 extraction: 3.2 ± 2.2% points; arteriovenous O2 difference: 7.1 ± 4.8 mL· L-1 ; P < .001). At 83% of W ˙ peak , muscle O2 conductance (DM O2 ; Fick law of diffusion) and the equilibration index Y were higher in TL (P < .01), indicating reduced diffusion limitations. The between-leg difference in O2 extraction correlated with the between-leg ratio of citrate synthase and COX-IV (r = .72-.73; P = .03), but not with the difference in the capillary-to-fiber ratio (P = .965). In conclusion, endurance training improves O2 extraction during small muscle mass exercise by elevating the muscle oxidative capacity and the recruitment of DM O2, especially evident during high-intensity exercise exploiting a larger fraction of the muscle oxidative capacity.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Entrenamiento Aeróbico/métodos , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno/fisiología , Músculo Cuádriceps/fisiología , Flujo Sanguíneo Regional/fisiología , Adulto , Humanos , Adulto Joven
2.
Eur J Appl Physiol ; 120(5): 985-999, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172291

RESUMEN

PURPOSE: The endurance training (ET)-induced increases in peak oxygen uptake ([Formula: see text]O2peak) and cardiac output ([Formula: see text]peak) during upright cycling are reversed to pre-ET levels after removing the training-induced increase in blood volume (BV). We hypothesised that ET-induced improvements in [Formula: see text]O2peak and [Formula: see text]peak are preserved following phlebotomy of the BV gained with ET during supine but not during upright cycling. Arteriovenous O2 difference (a-[Formula: see text]O2diff; [Formula: see text]O2/[Formula: see text]), cardiac dimensions and muscle morphology were studied to assess their role for the [Formula: see text]O2peak improvement. METHODS: Twelve untrained subjects ([Formula: see text]O2peak: 44 ± 6 ml kg-1 min-1) completed 10 weeks of supervised ET (3 sessions/week). Echocardiography, muscle biopsies, haemoglobin mass (Hbmass) and BV were assessed pre- and post-ET. [Formula: see text]O2peak and [Formula: see text]peak during upright and supine cycling were measured pre-ET, post-ET and immediately after Hbmass was reversed to the individual pre-ET level by phlebotomy. RESULTS: ET increased the Hbmass (3.3 ± 2.9%; P = 0.005), BV (3.7 ± 5.6%; P = 0.044) and [Formula: see text]O2peak during upright and supine cycling (11 ± 6% and 10 ± 8%, respectively; P ≤ 0.003). After phlebotomy, improvements in [Formula: see text]O2peak compared with pre-ET were preserved in both postures (11 ± 4% and 11 ± 9%; P ≤ 0.005), as was [Formula: see text]peak (9 ± 14% and 9 ± 10%; P ≤ 0.081). The increased [Formula: see text]peak and a-[Formula: see text]O2diff accounted for 70% and 30% of the [Formula: see text]O2peak improvements, respectively. Markers of mitochondrial density (CS and COX-IV; P ≤ 0.007) and left ventricular mass (P = 0.027) increased. CONCLUSION: The ET-induced increase in [Formula: see text]O2peak was preserved despite removing the increases in Hbmass and BV by phlebotomy, independent of posture. [Formula: see text]O2peak increased primarily through elevated [Formula: see text]peak but also through a widened a-[Formula: see text]O2diff, potentially mediated by cardiac remodelling and mitochondrial biogenesis.


Asunto(s)
Adaptación Fisiológica , Volumen Sanguíneo , Entrenamiento Aeróbico , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Consumo de Oxígeno , Adulto , Composición Corporal , Gasto Cardíaco , Femenino , Humanos , Masculino , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA