Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
J Nucl Cardiol ; 30(6): 2427-2437, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37221409

RESUMEN

BACKGROUND: The aim of this research was to asses perfusion-defect detection-accuracy by human observers as a function of reduced-counts for 3D Gaussian post-reconstruction filtering vs deep learning (DL) denoising to determine if there was improved performance with DL. METHODS: SPECT projection data of 156 normally interpreted patients were used for these studies. Half were altered to include hybrid perfusion defects with defect presence and location known. Ordered-subset expectation-maximization (OSEM) reconstruction was employed with the optional correction of attenuation (AC) and scatter (SC) in addition to distance-dependent resolution (RC). Count levels varied from full-counts (100%) to 6.25% of full-counts. The denoising strategies were previously optimized for defect detection using total perfusion deficit (TPD). Four medical physicist (PhD) and six physician (MD) observers rated the slices using a graphical user interface. Observer ratings were analyzed using the LABMRMC multi-reader, multi-case receiver-operating-characteristic (ROC) software to calculate and compare statistically the area-under-the-ROC-curves (AUCs). RESULTS: For the same count-level no statistically significant increase in AUCs for DL over Gaussian denoising was determined when counts were reduced to either the 25% or 12.5% of full-counts. The average AUC for full-count OSEM with solely RC and Gaussian filtering was lower than for the strategies with AC and SC, except for a reduction to 6.25% of full-counts, thus verifying the utility of employing AC and SC with RC. CONCLUSION: We did not find any indication that at the dose levels investigated and with the DL network employed, that DL denoising was superior in AUC to optimized 3D post-reconstruction Gaussian filtering.


Asunto(s)
Aprendizaje Profundo , Imagen de Perfusión Miocárdica , Humanos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Corazón , Curva ROC , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
Phys Med Biol ; 68(7)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36808915

RESUMEN

Objective.Monte-Carlo simulation studies have been essential for advancing various developments in single photon emission computed tomography (SPECT) imaging, such as system design and accurate image reconstruction. Among the simulation software available, Geant4 application for tomographic emission (GATE) is one of the most used simulation toolkits in nuclear medicine, which allows building systems and attenuation phantom geometries based on the combination of idealized volumes. However, these idealized volumes are inadequate for modeling free-form shape components of such geometries. Recent GATE versions alleviate these major limitations by allowing users to import triangulated surface meshes.Approach.In this study, we describe our mesh-based simulations of a next-generation multi-pinhole SPECT system dedicated to clinical brain imaging, called AdaptiSPECT-C. To simulate realistic imaging data, we incorporated in our simulation the XCAT phantom, which provides an advanced anatomical description of the human body. An additional challenge with the AdaptiSPECT-C geometry is that the default voxelized XCAT attenuation phantom was not usable in our simulation due to intersection of objects of dissimilar materials caused by overlap of the air containing regions of the XCAT beyond the surface of the phantom and the components of the imaging system.Main results.We validated our mesh-based modeling against the one constructed by idealized volumes for a simplified single vertex configuration of AdaptiSPECT-C through simulated projection data of123I-activity distributions. We resolved the overlap conflict by creating and incorporating a mesh-based attenuation phantom following a volume hierarchy. We then evaluated our reconstructions with attenuation and scatter correction for projections obtained from simulation consisting of mesh-based modeling of the system and the attenuation phantom for brain imaging. Our approach demonstrated similar performance as the reference scheme simulated in air for uniform and clinical-like123I-IMP brain perfusion source distributions.Significance.This work enables the simulation of complex SPECT acquisitions and reconstructions for emulating realistic imaging data close to those of actual patients.


Asunto(s)
Programas Informáticos , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Reproducibilidad de los Resultados , Tomografía Computarizada de Emisión de Fotón Único/métodos , Simulación por Computador , Fantasmas de Imagen , Método de Montecarlo
5.
IEEE Trans Radiat Plasma Med Sci ; 5(6): 817-825, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34746540

RESUMEN

SPECT imaging of dopamine transporters (DAT) in the brain is a widely utilized study to improve the diagnosis of Parkinsonian syndromes, where conventional (parallel-hole and fan-beam) collimators on dual-head scanners are commonly employed. We have designed a multi-pinhole (MPH) collimator to improve the performance of DAT imaging. The MPH collimator focuses on the striatum and hence offers a better trade-off for sensitivity and spatial resolution than the conventional collimators within this clinically most relevant region for DAT imaging. Our original MPH design consisted of 9 pinholes with a background-to-striatal (Bkg/Str) projection multiplexing of 1% only. In this simulation study, we investigated whether further improvements in the performance of MPH imaging could be obtained by increasing the number of pinholes, hence by enhancing the sensitivity and sampling, despite the ambiguity in reconstructing images due to increased multiplexing. We performed analytic simulations of the MPH configurations with 9, 13, and 16 pinholes (aperture diameters: 4-6mm) using a digital phantom modeling DAT imaging. Our quantitative analyses indicated that using 13 (Bkg/Str: 12%) and 16 (Bkg/Str: 22%) pinholes provided better performance than the original 9-pinhole configuration for the acquisition with 2 or 4 angular views, but a similar performance with 8 and 16 views.

6.
Biomed Phys Eng Express ; 7(6)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34507309

RESUMEN

Application of multi-pinhole collimator in pinhole-based SPECT increases detection sensitivity. The presence of multiplexing in projection images due to the usage of multiple pinholes can further improve the sensitivity at the cost of adding data ambiguity. We are developing a next-generation adaptive brain-dedicated SPECT system -AdaptiSPECT-C. The AdaptiSPECT-C can adapt the multiplexing level and system sensitivity using adaptable pinhole modules. In this study, we investigated the performance of 4 data acquisition schemes with different multiplexing levels and sensitivities on cerebral SPECT imaging. Schemes #1, #2, and #3 have <1%, 67%, and 31% overall multiplexing, respectively, while the 4th scheme without multiplexing is considered as ground truth. The ground-truth and schemes #1-3 have 1.0, 1.7, 5.1, and 4.0 times higher sensitivity, respectively, compared to a dual-headed parallel-hole SPECT system at matched spatial resolution. A customized XCAT brain perfusion digital phantom emulating the distribution of I-123 N-isopropyl iodoamphetamine (IMP) in a 99th percentile size male was used for simulations. Data acquisition for each scheme was performed at two count levels (low-count and high-count relative to the recommended clinical count level). The normalized root-mean-square error (NRMSE) for schemes #1, #2, and #3 with the low-count (high-count) scenario showed 11%, 4%, and 5% (10%, 5%, and 6%) deviation, respectively, from that of the multiplex-free ground truth. For both the low-count and high-count scenarios, scheme #1 resulted in the least accurate activity ratio (AR) for almost all the analyzed gray-matter brain regions. Further schemes #2 or #3 led to the most accurate AR values with both low-count and high-count scenarios for all the analyzed gray-matter regions. It was thus observed that even with this large head size which leads to significant multiplexing levels, the higher sensitivity from multiplexing could to some extent mitigate the data ambiguity and be translated into reconstructed images of higher quality.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único , Encéfalo/diagnóstico por imagen , Humanos , Masculino , Fantasmas de Imagen
7.
Phys Med Biol ; 66(3): 035007, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33065564

RESUMEN

With brain-dedicated multi-detector systems employing pinhole apertures the usage of detectors facing the top of the patient's head (i.e. quasi-vertex (QV) views) can provide the advantage of additional viewing from close to the brain for improved detector coverage. In this paper, we report the results of simulation and reconstruction studies to investigate the impact of the QV views on the imaging performance of AdaptiSPECT-C, a brain-dedicated stationary SPECT system under development. In this design, both primary and scatter photons from regions located inferior to the brain can contribute to SPECT projections acquired by the QV views, and thus degrade AdaptiSPECT-C imaging performance. In this work, we determined the proportion, origin, and nature (i.e. primary, scatter, and multiple-scatter) of counts emitted from structures within the head and throughout the body contributing to projections from the different AdaptiSPECT-C detector rings, as well as from a true vertex view detector. We simulated phantoms used to assess different aspects of image quality (i.e. uniform activity concentration sphere, and Derenzo), as well as anthropomorphic phantoms with different count levels emulating clinical 123I activity distributions (i.e. DaTscan and perfusion). We determined that attenuation and scatter in the patient's body greatly diminish the probability of the photons emitted outside the volume of interest reaching to detectors and being recorded within the 15% photopeak energy window. In addition, we demonstrated that the inclusion of the residual of such counts in the system acquisition does not degrade visual interpretation or quantitative analysis. The addition of the QV detectors improves volumetric sensitivity, angular sampling, and spatial resolution leading to significant enhancement in image quality, especially in the striato-thalamic and superior regions of the brain. Besides, the use of QV detectors improves the recovery of clinically relevant metrics such as the striatal binding ratio and mean activity in selected cerebral structures. Our findings proving the usefulness of the QV ring for brain imaging with 123I agents can be generalized to other commonly used SPECT imaging agents labelled with isotopes, such as 99mTc and likely 111In.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Fotones , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
8.
Phys Med Biol ; 66(6): 065004, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352545

RESUMEN

We are developing a multi-detector pinhole-based stationary brain-dedicated SPECT system: AdaptiSPECT-C. In this work, we introduced a new design prototype with multiple adaptable pinhole apertures for each detector to modulate the multiplexing by employing temporal shuttering of apertures. Temporal shuttering of apertures over the scan time provides the AdaptiSPECT-C with the capability of multiple-frame acquisition. We investigated, through analytic simulation, the impact of projection multiplexing on image quality using several digital phantoms and a customized anthropomorphic phantom emulating brain perfusion clinical distribution. The 105 pinholes in the collimator of the system were categorized into central, axial, and lateral apertures. We generated, through simulation, collimators of different multiplexing levels. Several data acquisition schemes were also created by changing the imaging time share of the acquisition frames. Sensitivity increased by 35% compared to the single-pinhole-per-detector base configuration of the AdaptiSPECT-C when using the central, axial, and lateral apertures with equal acquisition time shares within a triple-frame scheme with a high multiplexing scenario. Axial and angular sampling of the base configuration was enhanced by adding the axial and lateral apertures. We showed that the temporal shuttering of apertures can be exploited, trading the sensitivity, to modulate the multiplexing and to acquire a set of non-multiplexed non-truncated projections. Our results suggested that reconstruction benefited from utilizing both non-multiplexed projections and projections with modulated multiplexing resulting in a noticeably reduction in the multiplexing-induced image artefacts. Contrast recovery factor improved by 20% (9%) compared to the base configuration for a Defrise (hot-rod) phantom study when the central and axial (lateral) apertures with equal time shares were combined. The results revealed that, as an overall trend at each simulated multiplexing level, lowest normalized root-mean-square errors for the brain gray-matter regions were achieved with the combined usage of the central apertures and axial/lateral apertures.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Antropometría , Simulación por Computador , Humanos , Perfusión , Factores de Tiempo
9.
IEEE Trans Med Imaging ; 39(12): 4209-4224, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32763850

RESUMEN

We designed a dedicated multi-detector multi-pinhole brain SPECT scanner to generate images of higher quality compared to general-purpose systems. The system, AdaptiSPECT-C, is intended to adapt its sensitivity-resolution trade-off by varying its aperture configurations allowing both high-sensitivity dynamic and high-spatial-resolution static imaging. The current system design consists of 23 detector heads arranged in a truncated spherical geometry. In this work, we investigated the axial and angular sampling capability of the current stationary system design. Two data acquisition schemes using limited rotation of the gantry and two others using axial translation of the imaging bed were also evaluated concerning their impact on image quality through improved sampling. Increasing both angular and axial sampling in the current prototype system resulted in quantitative improvements in image quality metrics and qualitative appearance of the images as determined in studies with specifically selected phantoms. Visual improvements for the brain phantoms with clinical distributions were less pronounced but presented quantitative improvements in the fidelity (normalized root-mean-square error (NRMSE)) and striatal specific binding ratio (SBR) for a dopamine transporter (DAT) distribution, and in NRMSE and activity recovery for a brain perfusion distribution. More pronounced improvements with increased sampling were seen in contrast recovery coefficient, bias, and coefficient of variation for a lesion in the brain perfusion distribution. The negligible impact of the most cranial ring of detectors on axial sampling, but its significant impact on sensitivity and angular sampling in the cranial portion of the imaging volume-of-interest were also determined.


Asunto(s)
Encéfalo , Tomografía Computarizada de Emisión de Fotón Único , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Neuroimagen , Fantasmas de Imagen
10.
Phys Med Biol ; 64(24): 245001, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31746783

RESUMEN

Multi-pinhole (MPH) collimators are known to provide better trade-off between sensitivity and resolution for preclinical, as well as for smaller regions in clinical SPECT imaging compared to conventional collimators. In addition to this geometric advantage, MPH plates typically offer better stopping power for penetration than the conventional collimators, which is especially relevant for I-123 imaging. The I-123 emits a series of high-energy (>300 keV, ~2.5% abundance) gamma photons in addition to the primary emission (159 keV, 83% abundance). Despite their low abundance, high-energy photons penetrate through a low-energy parallel-hole (LEHR) collimator much more readily than the 159 keV photons, resulting in large downscatter in the photopeak window. In this work, we investigate the primary, scatter, and penetration characteristics of a single pinhole collimator that is commonly used for I-123 thyroid imaging and our two MPH collimators designed for I-123 DaTscan imaging for Parkinson's Disease, in comparison to three different parallel-hole collimators through a series of experiments and Monte Carlo simulations. The simulations of a point source and a digital human phantom with DaTscan activity distribution showed that our MPH collimators provide superior count performance in terms of high primary counts, low penetration, and low scatter counts compared to the parallel-hole and single pinhole collimators. For example, total scatter, multiple scatter, and collimator penetration events for the LEHR were 2.5, 7.6 and 14 times more than that of MPH within the 15% photopeak window. The total scatter fraction for LEHR was 56% where the largest contribution came from the high-energy scatter from the back compartments (31%). For the same energy window, the total scatter for MPH was 21% with only 1% scatter from the back compartments. We therefore anticipate that using MPH collimators, higher quality reconstructions can be obtained in a substantially shorter acquisition time for I-123 DaTscan and thyroid imaging.


Asunto(s)
Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Humanos , Radioisótopos de Yodo , Método de Montecarlo , Nortropanos , Fantasmas de Imagen , Fotones , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único/métodos
11.
J Adv Model Earth Syst ; 9(8): 3019-3044, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29497478

RESUMEN

NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

12.
J Clim ; 29(18): 6727-6749, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29928071

RESUMEN

Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally-constrained simulations with the NASA Goddard Earth Observing System version (GEOS-5) atmospheric general circulation model. The climate modes investigated are El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional Mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic), led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low- latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes, and not just to ENSO alone. Examination of seasonal predictability reveals that predictive skill of the three modes is limited over tropics to sub-tropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

13.
J Phys Chem B ; 116(26): 7695-708, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22651684

RESUMEN

Theoretical approaches for simulating the ultrafast dynamics of photoinduced proton-coupled electron transfer (PCET) reactions in solution are developed and applied to a series of model systems. These processes are simulated by propagating nonadiabatic surface hopping trajectories on electron-proton vibronic surfaces that depend on the solute and solvent nuclear coordinates. The PCET system is represented by a four-state empirical valence bond model, and the solvent is treated either as explicit solvent molecules or as a dielectric continuum, in which case the solvent dynamics is described in terms of two collective solvent coordinates corresponding to the energy gaps associated with electron and proton transfer. The explicit solvent simulations reveal two distinct solvent relaxation time scales, where the faster time scale relaxation corresponds to librational motions of solvent molecules in the first solvation shell, and the slower time scale relaxation corresponds to the bulk solvent dielectric response. The charge transfer dynamics is strongly coupled to both the fast and slow time scale solvent dynamics. The dynamical multistate continuum theory is extended to include the effects of two solvent relaxation time scales, and the resulting coupled generalized Langevin equations depend on parameters that can be extracted from equilibrium molecular dynamics simulations. The implicit and explicit solvent approaches lead to qualitatively similar charge transfer and solvent dynamics for model PCET systems, suggesting that the implicit solvent treatment captures the essential elements of the nonequilibrium solvent dynamics for many systems. A combination of implicit and explicit solvent approaches will enable the investigation of photoinduced PCET processes in a variety of condensed phase systems.


Asunto(s)
Electrones , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Protones , Solventes , Algoritmos , Transporte de Electrón , Modelos Químicos , Procesos Estocásticos , Termodinámica
14.
J Am Chem Soc ; 133(21): 8282-92, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21524104

RESUMEN

The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently the concerted proton-coupled electron transfer (PCET) reaction in a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this double proton transfer system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wave functions and the incorporation of multiple proton donor-acceptor motions. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in these systems. The calculated KIEs and the ratio of the standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard PCET rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wave functions, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The theory predicts that this rate constant may be increased by modifying the molecule in a manner that decreases the equilibrium proton donor-acceptor distances or alters the molecular thermal motions to facilitate the concurrent decrease of these distances. These insights may guide the design of more efficient catalysts for energy conversion devices.


Asunto(s)
Transporte de Electrón , Modelos Químicos , Protones , Electroquímica , Enlace de Hidrógeno , Cinética , Oxidación-Reducción , Vibración
15.
J Chem Phys ; 132(8): 084110, 2010 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-20192293

RESUMEN

An approximation for treating multiple quantum nuclei within the nuclear-electronic orbital (NEO) framework for molecular systems is presented. In the approximation to NEO-Hartree-Fock, the nuclear wave function is represented by a Hartree product rather than a Slater determinant, corresponding to the neglect of the nuclear exchange interactions. In the approximation to NEO-density functional theory, the nuclear exchange-correlation functional is chosen to be the diagonal nuclear exchange interaction terms, thereby eliminating the nuclear self-interaction terms. To further enhance the simplicity and computational efficiency, the nuclear molecular orbitals or Kohn-Sham orbitals are expanded in terms of localized nuclear basis sets. These approximations are valid because of the inherent localization of the nuclear orbitals and the numerical insignificance of the nuclear exchange interactions in molecular systems. Moreover, these approximations lead to substantial computational savings due to the reduction in both the number of integrals that must be calculated and the size of the matrices that must be diagonalized. These nuclear Hartree product approximation (HPA) methods scale linearly with the number of quantum protons and are highly parallelizable. Applications to a water hexamer, glycine dimer, and 32-water cluster, where all hydrogen nuclei are treated quantum mechanically, illustrate the accuracy and computational efficiency of the nuclear HPA methods. These strategies will facilitate the implementation of explicitly correlated NEO methods for molecular systems with multiple quantum protons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...