Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 12(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883377

RESUMEN

Monitoring for mastitis on dairy farms is of particular importance, as it is one of the most prevalent bovine diseases. A commonly used indicator for mastitis monitoring is somatic cell count. A supplementary tool to predict mastitis risk may be mid-infrared (MIR) spectroscopy of milk. Because bovine health status can affect milk composition, this technique is already routinely used to determine standard milk components. The aim of the present study was to compare the performance of models to predict clinical mastitis based on MIR spectral data and/or somatic cell count score (SCS), and to explore differences of prediction accuracies for acute and chronic clinical mastitis diagnoses. Test-day data of the routine Austrian milk recording system and diagnosis data of its health monitoring, from 59,002 cows of the breeds Fleckvieh (dual purpose Simmental), Holstein Friesian and Brown Swiss, were used. Test-day records within 21 days before and 21 days after a mastitis diagnosis were defined as mastitis cases. Three different models (MIR, SCS, MIR + SCS) were compared, applying Partial Least Squares Discriminant Analysis. Results of external validation in the overall time window (-/+21 days) showed area under receiver operating characteristic curves (AUC) of 0.70 when based only on MIR, 0.72 when based only on SCS, and 0.76 when based on both. Considering as mastitis cases only the test-day records within 7 days after mastitis diagnosis, the corresponding areas under the curve were 0.77, 0.83 and 0.85. Hence, the model combining MIR spectral data and SCS was performing best. Mastitis probabilities derived from the prediction models are potentially valuable for routine mastitis monitoring for farmers, as well as for the genetic evaluation of the trait udder health.

2.
Foods ; 10(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34574345

RESUMEN

Measuring the mineral composition of milk is of major interest in the dairy sector. This study aims to develop and validate robust multi-breed and multi-country models predicting the major minerals through milk mid-infrared spectrometry using partial least square regressions. A total of 1281 samples coming from five countries were analyzed to obtain spectra and in ICP-AES to measure the mineral reference contents. Models were built from records coming from four countries (n = 1181) and validated using records from the fifth country, Austria (n = 100). The importance of including local samples was tested by integrating 30 Austrian samples in the model while validating with the remaining 70 samples. The best performances were achieved using this second set of models, confirming the need to cover the spectral variability of a country before making a prediction. Validation root mean square errors were 54.56, 63.60, 7.30, 59.87, and 152.89 mg/kg for Na, Ca, Mg, P, and K, respectively. The built models were applied on the Walloon milk recording large-scale spectral database, including 3,510,077. The large-scale predictions on this dairy herd improvement database provide new insight regarding the minerals' variability in the population, as well as the effect of parity, stage of lactation, breeds, and seasons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...