Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Rep ; 8(2): 371-81, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25017070

RESUMEN

In mammals, a cell's decision to divide is thought to be under the control of the Rb/E2F pathway. We previously found that inactivation of the Rb family of cell cycle inhibitors (Rb, p107, and p130) in quiescent liver progenitors leads to uncontrolled division and cancer initiation. Here, we show that, in contrast, deletion of the entire Rb gene family in mature hepatocytes is not sufficient for their long-term proliferation. The cell cycle block in Rb family mutant hepatocytes is independent of the Arf/p53/p21 checkpoint but can be abrogated upon decreasing liver size. At the molecular level, we identify YAP, a transcriptional regulator involved in organ size control, as a factor required for the sustained expression of cell cycle genes in hepatocytes. These experiments identify a higher level of regulation of the cell cycle in vivo in which signals regulating organ size are dominant regulators of the core cell cycle machinery.


Asunto(s)
Proliferación Celular , Hígado/crecimiento & desarrollo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Genes cdc , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/fisiología , Hígado/metabolismo , Ratones , Tamaño de los Órganos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Señalizadoras YAP
2.
Bioinformatics ; 29(15): 1922-4, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23732275

RESUMEN

MOTIVATION: Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. IMPLEMENTATION: The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. CONTACT: abutte@stanford.edu SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.


Asunto(s)
Inmunoprecipitación de Cromatina , Programas Informáticos , Factores de Transcripción/metabolismo , Genes , Internet , Análisis de Secuencia de ADN
3.
PLoS Genet ; 9(1): e1003209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349633

RESUMEN

Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres.


Asunto(s)
Centrómero/genética , Segregación Cromosómica/genética , Genoma Fúngico , Microtúbulos/genética , Autoantígenos/genética , Autoantígenos/metabolismo , Secuencia de Bases , Proteína A Centromérica , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Histonas/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Yale J Biol Med ; 85(3): 323-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23012580

RESUMEN

The sciences have seen a large increase in demand for students in bioinformatics and multidisciplinary fields in general. Many new educational programs have been created to satisfy this demand, but navigating these programs requires a non-traditional outlook and emphasizes working in teams of individuals with distinct yet complementary skill sets. Written from the perspective of a current bioinformatics student, this article seeks to offer advice to prospective and current students in bioinformatics regarding what to expect in their educational program, how multidisciplinary fields differ from more traditional paths, and decisions that they will face on the road to becoming successful, productive bioinformaticists.


Asunto(s)
Ingeniería Biomédica/educación , Biología Computacional/educación , Comunicación Interdisciplinaria , Estudiantes , Algoritmos , Biología Computacional/métodos , Humanos , Aprendizaje , Edición/normas , Recursos Humanos
5.
J Biol Chem ; 287(37): 30897-905, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22952240

RESUMEN

Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Replicación del ADN , Regulación de la Expresión Génica , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Virosis/metabolismo , Proteínas Cromosómicas no Histona/genética , Humanos , Neoplasias/genética , Factores de Transcripción/genética , Virosis/genética
6.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265404

RESUMEN

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transcripción Genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos
7.
Genome Biol ; 12(8): 125, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21867570

RESUMEN

Advances in sequencing technology have led to a sharp decrease in the cost of 'data generation'. But is this sufficient to ensure cost-effective and efficient 'knowledge generation'?


Asunto(s)
Genómica/economía , Genómica/métodos , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/métodos , Costos y Análisis de Costo , Sistemas de Administración de Bases de Datos , Genoma Humano , Humanos
8.
PLoS Genet ; 7(3): e1002008, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21408204

RESUMEN

A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5' ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated.


Asunto(s)
Ciclo Celular/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina , Proteínas Cromosómicas no Histona , Factores de Transcripción , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/métodos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Science ; 330(6012): 1775-87, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-21177976

RESUMEN

We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma de los Helmintos , Anotación de Secuencia Molecular , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Cromosomas/genética , Cromosomas/metabolismo , Cromosomas/ultraestructura , Biología Computacional/métodos , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genes de Helminto , Genómica/métodos , Histonas/metabolismo , Modelos Genéticos , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Mol Syst Biol ; 6: 403, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20739925

RESUMEN

In parallel to the growth in bioscience databases, biomedical publications have increased exponentially in the past decade. However, the extraction of high-quality information from the corpus of scientific literature has been hampered by the lack of machine-interpretable content, despite text-mining advances. To address this, we propose creating a structured digital table as part of an overall effort in developing machine-readable, structured digital literature. In particular, we envision transforming publication tables into standardized triples using Semantic Web approaches. We identify three canonical types of tables (conveying information about properties, networks, and concept hierarchies) and show how more complex tables can be built from these basic types. We envision that authors would create tables initially using the structured triples for canonical types and then have them visually rendered for publication, and we present examples for converting representative tables into triples. Finally, we discuss how 'stub' versions of structured digital tables could be a useful bridge for connecting together the literature with databases, allowing the former to more precisely document the later.


Asunto(s)
Sistemas de Administración de Bases de Datos , Internet , Revisión de la Investigación por Pares , Edición , Semántica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
11.
BMC Res Notes ; 2: 223, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19895698

RESUMEN

BACKGROUND: Francisella tularensis is the etiologic agent of tularemia and is classified as a select agent by the Centers for Disease Control and Prevention. Currently four known subspecies of F. tularensis that differ in virulence and geographical distribution are recognized:tularensis (type A), holarctica (type B), mediasiatica, and novicida. Because of the Select Agent status and differences in virulence and geographical location, the molecular analysis of any clinical case of tularemia is of particular interest. We analyzed an unusual Francisella clinical isolate from a human infection in Arizona using multiple DNA-based approaches. FINDINGS: We report that the isolate is F. tularensis subsp. novicida, a subspecies that is rarely isolated. CONCLUSION: The rarity of this novicida subspecies in clinical settings makes each case study important for our understanding of its role in disease and its genetic relationship with other F. tularensis subspecies.

12.
Proc Natl Acad Sci U S A ; 106(35): 14926-31, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706456

RESUMEN

Disruptions in local chromatin structure often indicate features of biological interest such as regulatory regions. We find that sonication of cross-linked chromatin, when combined with a size-selection step and massively parallel short-read sequencing, can be used as a method (Sono-Seq) to map locations of high chromatin accessibility in promoter regions. Sono-Seq sites frequently correspond to actively transcribed promoter regions, as evidenced by their co-association with RNA Polymerase II ChIP regions, transcription start sites, histone H3 lysine 4 trimethylation (H3K4me3) marks, and CpG islands; signals over other sites, such as those bound by the CTCF insulator, are also observed. The pattern of breakage by Sono-Seq overlaps with, but is distinct from, that observed for FAIRE and DNase I hypersensitive sites. Our results demonstrate that Sono-Seq can be a useful and simple method by which to map many local alterations in chromatin structure. Furthermore, our results provide insights into the mapping of binding sites by using ChIP-Seq experiments and the value of reference samples that should be used in such experiments.


Asunto(s)
Cromatina , Mapeo Cromosómico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Expresión Génica , Marcadores Genéticos , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Ratones
13.
J Bacteriol ; 191(8): 2474-84, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19251856

RESUMEN

Francisella tularensis contains several highly pathogenic subspecies, including Francisella tularensis subsp. holarctica, whose distribution is circumpolar in the northern hemisphere. The phylogeography of these subspecies and their subclades was examined using whole-genome single nucleotide polymorphism (SNP) analysis, high-density microarray SNP genotyping, and real-time-PCR-based canonical SNP (canSNP) assays. Almost 30,000 SNPs were identified among 13 whole genomes for phylogenetic analysis. We selected 1,655 SNPs to genotype 95 isolates on a high-density microarray platform. Finally, 23 clade- and subclade-specific canSNPs were identified and used to genotype 496 isolates to establish global geographic genetic patterns. We confirm previous findings concerning the four subspecies and two Francisella tularensis subsp. tularensis subpopulations and identify additional structure within these groups. We identify 11 subclades within F. tularensis subsp. holarctica, including a new, genetically distinct subclade that appears intermediate between Japanese F. tularensis subsp. holarctica isolates and the common F. tularensis subsp. holarctica isolates associated with the radiation event (the B radiation) wherein this subspecies spread throughout the northern hemisphere. Phylogenetic analyses suggest a North American origin for this B-radiation clade and multiple dispersal events between North America and Eurasia. These findings indicate a complex transmission history for F. tularensis subsp. holarctica.


Asunto(s)
ADN Bacteriano/genética , Francisella tularensis/clasificación , Francisella tularensis/aislamiento & purificación , Geografía , Polimorfismo de Nucleótido Simple , Tularemia/epidemiología , Tularemia/microbiología , Asia/epidemiología , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Europa (Continente)/epidemiología , Francisella tularensis/genética , Genoma Bacteriano , Genotipo , Análisis por Micromatrices/métodos , Epidemiología Molecular , América del Norte/epidemiología , Filogenia
14.
Nat Biotechnol ; 27(1): 66-75, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19122651

RESUMEN

Chromatin immunoprecipitation (ChIP) followed by tag sequencing (ChIP-seq) using high-throughput next-generation instrumentation is fast, replacing chromatin immunoprecipitation followed by genome tiling array analysis (ChIP-chip) as the preferred approach for mapping of sites of transcription-factor binding and chromatin modification. Using two deeply sequenced data sets for human RNA polymerase II and STAT1, each with matching input-DNA controls, we describe a general scoring approach to address unique challenges in ChIP-seq data analysis. Our approach is based on the observation that sites of potential binding are strongly correlated with signal peaks in the control, likely revealing features of open chromatin. We develop a two-pass strategy called PeakSeq to compensate for this. A two-pass strategy compensates for signal caused by open chromatin, as revealed by inclusion of the controls. The first pass identifies putative binding sites and compensates for genomic variation in the 'mappability' of sequences. The second pass filters out sites not significantly enriched compared to the normalized control, computing precise enrichments and significances. Our scoring procedure enables us to optimize experimental design by estimating the depth of sequencing required for a desired level of coverage and demonstrating that more than two replicates provides only a marginal gain in information.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Sitios de Unión , Biotecnología/métodos , Cromatina/química , ADN/química , Reacciones Falso Positivas , Variación Genética , Genoma , Genómica , Humanos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Polimerasa II/química , Análisis de Secuencia de ADN , Programas Informáticos
15.
BMC Genomics ; 10: 37, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19159457

RESUMEN

BACKGROUND: Short-read high-throughput DNA sequencing technologies provide new tools to answer biological questions. However, high cost and low throughput limit their widespread use, particularly in organisms with smaller genomes such as S. cerevisiae. Although ChIP-Seq in mammalian cell lines is replacing array-based ChIP-chip as the standard for transcription factor binding studies, ChIP-Seq in yeast is still underutilized compared to ChIP-chip. We developed a multiplex barcoding system that allows simultaneous sequencing and analysis of multiple samples using Illumina's platform. We applied this method to analyze the chromosomal distributions of three yeast DNA binding proteins (Ste12, Cse4 and RNA PolII) and a reference sample (input DNA) in a single experiment and demonstrate its utility for rapid and accurate results at reduced costs. RESULTS: We developed a barcoding ChIP-Seq method for the concurrent analysis of transcription factor binding sites in yeast. Our multiplex strategy generated high quality data that was indistinguishable from data obtained with non-barcoded libraries. None of the barcoded adapters induced differences relative to a non-barcoded adapter when applied to the same DNA sample. We used this method to map the binding sites for Cse4, Ste12 and Pol II throughout the yeast genome and we found 148 binding targets for Cse4, 823 targets for Ste12 and 2508 targets for PolII. Cse4 was strongly bound to all yeast centromeres as expected and the remaining non-centromeric targets correspond to highly expressed genes in rich media. The presence of Cse4 non-centromeric binding sites was not reported previously. CONCLUSION: We designed a multiplex short-read DNA sequencing method to perform efficient ChIP-Seq in yeast and other small genome model organisms. This method produces accurate results with higher throughput and reduced cost. Given constant improvements in high-throughput sequencing technologies, increasing multiplexing will be possible to further decrease costs per sample and to accelerate the completion of large consortium projects such as modENCODE.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Sitios de Unión , Centrómero/metabolismo , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , ADN de Hongos/genética , Genoma Fúngico , Biblioteca Genómica , Genómica/métodos , Factores de Transcripción/metabolismo
16.
BMC Genomics ; 9: 566, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19038032

RESUMEN

BACKGROUND: Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. RESULTS: We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3' end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. CONCLUSION: Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species.


Asunto(s)
Burkholderia mallei/genética , Variación Genética , Islas Genómicas , Transferencia de Gen Horizontal , ARN de Transferencia/genética , Terminología como Asunto
18.
J Bacteriol ; 189(24): 9044-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17933898

RESUMEN

Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.


Asunto(s)
Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Evolución Molecular , Transferencia de Gen Horizontal , Australia/epidemiología , Burkholderia pseudomallei/aislamiento & purificación , Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Microbiología Ambiental , Genotipo , Humanos , Melioidosis/epidemiología , Melioidosis/microbiología , Epidemiología Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN , Homología de Secuencia , Sintenía , Tailandia/epidemiología
19.
PLoS One ; 2(9): e947, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17895988

RESUMEN

Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I - A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between "WY96" and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis.


Asunto(s)
ADN Circular/genética , Francisella tularensis/genética , Genoma Bacteriano , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Francisella tularensis/aislamiento & purificación , Francisella tularensis/patogenicidad , Orden Génico , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie , Virulencia/genética
20.
PLoS One ; 2(8): e770, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17712418

RESUMEN

BACKGROUND: Yersinia pestis, the etiologic agent of plague, was responsible for several devastating epidemics throughout history and is currently of global importance to current public heath and biodefense efforts. Y. pestis is widespread in the Western United States. Because Y. pestis was first introduced to this region just over 100 years ago, there has been little time for genetic diversity to accumulate. Recent studies based upon single nucleotide polymorphisms have begun to quantify the genetic diversity of Y. pestis in North America. METHODOLOGY/PRINCIPAL FINDINGS: To examine the evolution of Y. pestis in North America, a gapped genome sequence of CA88-4125 was generated. Sequence comparison with another North American Y. pestis strain, CO92, identified seven regions of difference (six inversions, one rearrangement), differing IS element copy numbers, and several SNPs. CONCLUSIONS/SIGNIFICANCE: The relatively large number of inverted/rearranged segments suggests that North American Y. pestis strains may be undergoing inversion fixation at high rates over a short time span, contributing to higher-than-expected diversity in this region. These findings will hopefully encourage the scientific community to sequence additional Y. pestis strains from North America and abroad, leading to a greater understanding of the evolutionary history of this pathogen.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Yersinia pestis/genética , Inversión Cromosómica , Variación Genética , Humanos , Datos de Secuencia Molecular , América del Norte , Peste/epidemiología , Peste/genética , Peste/microbiología , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...