Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365250

RESUMEN

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Asunto(s)
Fijación del Nitrógeno , Populus , Fijación del Nitrógeno/fisiología , Populus/genética , Populus/metabolismo , Endófitos/genética , Oxidorreductasas/genética , Hibridación Fluorescente in Situ , Nitrogenasa/genética , Nitrogenasa/metabolismo , Nitrógeno
2.
Front Microbiol ; 10: 2163, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632357

RESUMEN

We identified two poplar (Populus sp.)-associated microbes, the fungus, Mortierella elongata strain AG77, and the bacterium, Burkholderia strain BT03, that mutually promote each other's growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates. Coupling microfluidics and comparative metabolomics data results indicated that observed microbial growth stimulation involves metabolic exchange during two ordered events. The first is an emission of fungal metabolites, including organic acids used or modified by bacteria. A second signal of unknown nature is produced by bacteria which increases fungal growth rates. We find this symbiosis is initiated in part by metabolic exchange involving fungal organic acids.

3.
Sci Rep ; 9(1): 10272, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31312009

RESUMEN

Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse in nature, and are present with a broad range of concentrations. Moreover, direct imaging by chemically informative tools can significantly compromise viability of the system of interest or lack adequate resolution. Here, we present a nano-enabled and label-free imaging technology using a microfluidic sampling network to track production and distribution of chemical information in the microenvironment of a living organism. We describe the integration of a polyester track-etched (PETE) nanofluidic interface to physically confine the biological sample within the model environment, while allowing fluidic access via an underlying microfluidic network. The nanoporous interface enables sampling of the microenvironment above in a time-dependent and spatially-resolved manner. For demonstration, the diffusional flux through the PETE membrane was characterized to understand membrane performance, and exometabolites from a growing plant root were successfully profiled in a space- and time-resolved manner. This method and device provide a frame-by-frame description of the chemical environment that maps to the physical and biological characteristics of the sample.

4.
PLoS One ; 14(6): e0218316, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31246972

RESUMEN

Bacteria occupy heterogeneous environments, attaching and growing within pores in materials, living hosts, and matrices like soil. Systems that permit high-resolution visualization of dynamic bacterial processes within the physical confines of a realistic and tractable porous media environment are rare. Here we use microfluidics to replicate the grain shape and packing density of natural sands in a 2D platform to study the flow-induced spatial evolution of bacterial biofilms underground. We discover that initial bacterial dispersal and grain attachment is influenced by bacterial transport across pore space velocity gradients, a phenomenon otherwise known as rheotaxis. We find that gravity-driven flow conditions activate different bacterial cell-clustering phenotypes depending on the strain's ability to product extracellular polymeric substances (EPS). A wildtype, biofilm-producing bacteria formed compact, multicellular patches while an EPS-defective mutant displayed a linked-cell phenotype in the presence of flow. These phenotypes subsequently influenced the overall spatial distribution of cells across the porous media network as colonies grew and altered the fluid dynamics of their microenvironment.


Asunto(s)
Biopelículas , Hidrodinámica , Microfluídica , Pantoea/fisiología , Biopolímeros/metabolismo , Fluorescencia , Microfluídica/instrumentación , Mutación/genética , Pantoea/crecimiento & desarrollo , Porosidad , Presión , Factores de Tiempo
5.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076430

RESUMEN

Soils contain a tangle of minerals, water, nutrients, gases, plant roots, decaying organic matter, and microorganisms which work together to cycle nutrients and support terrestrial plant growth. Most soil microorganisms live in periodically interconnected communities closely associated with soil aggregates, i.e., small (<2 mm), strongly bound clusters of minerals and organic carbon that persist through mechanical disruptions and wetting events. Their spatial structure is important for biogeochemical cycling, and we cannot reliably predict soil biological activities and variability by studying bulk soils alone. To fully understand the biogeochemical processes at work in soils, it is necessary to understand the micrometer-scale interactions that occur between soil particles and their microbial inhabitants. Here, we review the current state of knowledge regarding soil aggregate microbial communities and identify areas of opportunity to study soil ecosystems at a scale relevant to individual cells. We present a framework for understanding aggregate communities as "microbial villages" that are periodically connected through wetting events, allowing for the transfer of genetic material, metabolites, and viruses. We describe both top-down (whole community) and bottom-up (reductionist) strategies for studying these communities. Understanding this requires combining "model system" approaches (e.g., developing mock community artificial aggregates), field observations of natural communities, and broader study of community interactions to include understudied community members, like viruses. Initial studies suggest that aggregate-based approaches are a critical next step for developing a predictive understanding of how geochemical and community interactions govern microbial community structure and nutrient cycling in soil.


Asunto(s)
Microbiota/fisiología , Microbiología del Suelo , Ecosistema , Suelo
6.
PLoS One ; 13(3): e0192752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29596418

RESUMEN

Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Impresión Tridimensional , Diseño de Software
7.
J Vis Exp ; (126)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28829431

RESUMEN

Root hairs increase root surface area for better water uptake and nutrient absorption by the plant. Because they are small in size and often obscured by their natural environment, root hair morphology and function are difficult to study and often excluded from plant research. In recent years, microfluidic platforms have offered a way to visualize root systems at high resolution without disturbing the roots during transfer to an imaging system. The microfluidic platform presented here builds on previous plant-on-a-chip research by incorporating a two-layer device to confine the Arabidopsis thaliana main root to the same optical plane as the root hairs. This design enables the quantification of root hairs on a cellular and organelle level and also prevents z-axis drifting during the addition of experimental treatments. We describe how to store the devices in a contained and hydrated environment, without the need for fluidic pumps, while maintaining a gnotobiotic environment for the seedling. After the optical imaging experiment, the device may be disassembled and used as a substrate for atomic force or scanning electron microscopy while keeping fine root structures intact.


Asunto(s)
Arabidopsis/anatomía & histología , Microfluídica/instrumentación , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Rastreo/métodos , Raíces de Plantas/anatomía & histología , Diseño de Equipo , Microfluídica/métodos , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Rastreo/instrumentación , Plantones/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...