Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci ; 41(22): 1983-1993, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38305379

RESUMEN

Identifying tools and processes to effectively and efficiently evaluate technologies is an area of need for many sport stakeholders. This study aimed to develop a standardised, evidence-based framework to guide the evaluation of sports technologies. In developing the framework, a review of standards, guidelines and research into sports technology was conducted. Following this, 55 experts across the sports industry were presented with a draft framework for feedback. Following a two-round Delphi survey, the final framework consisted of 25 measurable features grouped under five quality pillars. These were 1) Quality Assurance & Measurement (Accuracy, Repeatability, Reproducibility, Specifications), 2) Established Benefit (Construct Validity, Concurrent Validity, Predictive Validity, Functionality), 3) Ethics & Security (Compliance, Privacy, Ownership, Safety, Transparency, Environmental Sustainability), 4) User Experience (Usability, Robustness, Data Representation, Customer Support & Training, Accessibility) & 5) Data Management (Data Standardisation, Interoperability, Maintainability, Scalability). The framework can be used to help design and refine sports technology in order to optimise quality and maintain industry standards, as well as guide purchasing decisions by organisations. It may also serve to create a common language for organisations, manufacturers, investors, and consumers to improve the efficiency of their decision-making relating to sports technology.


Asunto(s)
Deportes , Humanos , Reproducibilidad de los Resultados , Tecnología , Predicción
2.
Scand J Med Sci Sports ; 28(11): 2263-2271, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29883534

RESUMEN

Near-infrared spectroscopy (NIRS) is a common tool used to study oxygen availability and utilization during repeated-sprint exercise. However, there are inconsistent methods of smoothing and determining peaks and nadirs from the NIRS signal, which make interpretation and comparisons between studies difficult. To examine the effects of averaging method on deoxyhaemoglobin concentration ([HHb]) trends, nine males performed ten 10-s sprints, with 30 seconds of recovery, and six analysis methods were used for determining peaks and nadirs in the [HHb] signal. First, means were calculated over predetermined windows in the last 5 and 2 seconds of each sprint and recovery period. Second, moving 5-seconds and 2-seconds averages were also applied, and peaks/nadirs were determined for each 40-seconds sprint/recovery cycle. Third, a Butterworth filter was used to smooth the signal, and the resulting signal output was used to determine peaks and nadirs from predetermined time points and a rolling approach. Correlation and residual analysis showed that the Butterworth filter attenuated the "noise" in the signal, while maintaining the integrity of the raw data (r = .9892; mean standardized residual -9.71 × 103  ± 3.80). Means derived from predetermined windows, irrespective of length and data smoothing, underestimated the magnitude of peak and nadir [HHb] compared to a rolling mean approach. Consequently, sprint-induced metabolic changes (inferred from Δ[HHb]) were underestimated. Based on these results, we suggest using a digital filter to smooth NIRS data, rather than an arithmetic mean, and a rolling approach to determine peaks and nadirs for accurate interpretation of muscle oxygenation trends.


Asunto(s)
Ejercicio Físico/fisiología , Hemoglobinas/análisis , Consumo de Oxígeno , Adulto , Interpretación Estadística de Datos , Humanos , Masculino , Músculo Esquelético/fisiología , Espectroscopía Infrarroja Corta , Adulto Joven
3.
J Sports Sci ; 36(15): 1727-1733, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29192842

RESUMEN

The validity of an Ultra-wideband (UWB) positioning system was investigated during linear and change-of-direction (COD) running drills. Six recreationally-active men performed ten repetitions of four activities (walking, jogging, maximal acceleration, and 45º COD) on an indoor court. Activities were repeated twice, in the centre of the court and on the side. Participants wore a receiver tag (Clearsky T6, Catapult Sports) and two reflective markers placed on the tag to allow for comparisons with the criterion system (Vicon). Distance, mean and peak velocity, acceleration, and deceleration were assessed. Validity was assessed via percentage least-square means difference (Clearsky-Vicon) with 90% confidence interval and magnitude-based inference; typical error was expressed as within-subject standard deviation. The mean differences for distance, mean/peak speed, and mean/peak accelerations in the linear drills were in the range of 0.2-12%, with typical errors between 1.2 and 9.3%. Mean and peak deceleration had larger differences and errors between systems. In the COD drill, moderate-to-large differences were detected for the activity performed in the centre of the court, increasing to large/very large on the side. When filtered and smoothed following a similar process, the UWB-based positioning system had acceptable validity, compared to Vicon, to assess movements representative of indoor sports.


Asunto(s)
Trote , Monitoreo Ambulatorio/instrumentación , Carrera , Caminata , Aceleración , Adulto , Desaceleración , Humanos , Masculino , Deportes
4.
J Appl Physiol (1985) ; 118(6): 699-706, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25614596

RESUMEN

The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and ß1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, ß1-, or ß3-isoform abundances. The NKA ß2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased ß1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA ß1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.


Asunto(s)
Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Isoformas de Proteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Femenino , Humanos , Masculino , Cadenas Pesadas de Miosina/metabolismo
5.
Int J Sports Med ; 34(9): 800-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23444096

RESUMEN

The effects of high-intensity, short-duration, re-warm-ups on team-sport-related performance were investigated. In a randomised, cross-over study, participants performed 2×26-min periods of an intermittent activity protocol (IAP) on a non-motorized treadmill, interspersed by 15-min of passive recovery (CON); 3-min small-sided game (SSG); or a 5RM leg-press. Measures included counter-movement jump, repeated-sprint, the Loughborough soccer passing test (LSPT), blood lactate concentration, heart-rate, and perceptual measures. Data were analyzed using effect size (90% confidence intervals), and percentage change; determining magnitudes of effects. A 5RM re-warm-up improved flight-time to contraction-time ratio when compared to SSG (9.8%, ES; 0.5±0.3) and CON (ES: 9.4%, 0.7±0.5) re-warm-ups, remaining higher following the second IAP (8.8%, ES; 0.5±0.3 and 10.2%, ES; 0.6±0.6, respectively). Relative-maximum rate-of-force development was greater in the 5RM condition following the second IAP compared to SSG (29.3%, ES; 0.7±0.5) and CON (16.2%, ES; 0.6±0.6). Repeated-sprint ability during the second IAP improved in the 5RM re-warm-up; peak velocity, mean velocity, and acceleration were 4, 3, and 18% greater, respectively. Within groups, the SSG re-warm-up improved LSPT performance post-intervention; 6.4% (ES: 0.6±0.8) and following the second IAP 6.2% (ES: 0.6±0.6), compared to pre-intervention. A 5RM leg-press re-warm-up improved physical performance, while a SSG re-warm-up enhanced skill execution following standardized intermittent exercise.


Asunto(s)
Rendimiento Atlético/fisiología , Frecuencia Cardíaca/fisiología , Fútbol/fisiología , Ejercicio de Calentamiento/fisiología , Adulto , Estudios Cruzados , Humanos , Ácido Láctico/sangre , Masculino , Carrera/fisiología , Adulto Joven
7.
Int J Sports Med ; 34(1): 34-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22895869

RESUMEN

We quantified the acceleration and high-velocity running of elite Australian soccer players. We hypothesised that high-intensity activity would be underestimated when excluding acceleration during match analysis given its high metabolic demand and occurrence at low velocities. Player movements were observed from 29 players (forwards and central and wide defenders and midfielders) during domestic Australian competition using 5-Hz global positioning system. Effort occurrence were determined for high-velocity running, sprinting and maximal accelerations. The commencement and final velocity of maximal accelerations were also identified. Players undertook an 8~fold greater number of maximal accelerations than sprints per game (65±21 vs. 8±5). Of maximal accelerations ~98% commenced from a starting velocity lower than what would be considered high-velocity running while ~85% did not cross the high-velocity running threshold. The number of efforts performed in all categories were position dependent (P<0.001). Wide defenders performed more maximal accelerations (P<0.006) and central defenders and midfielders performed less sprints compared to all other positions (P<0.02). Maximal accelerations are frequently undertaken during a match often occurring at low velocities. Excluding maximal accelerations in match analysis research may underestimate the amount of high-intensity movements undertaken. Additionally positional differences in high-intensity movements should be accounted for when developing specific conditioning drills.


Asunto(s)
Aceleración , Rendimiento Atlético/fisiología , Carrera/fisiología , Fútbol/fisiología , Atletas , Australia , Sistemas de Información Geográfica , Humanos , Masculino
8.
Eur J Appl Physiol ; 102(1): 45-55, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17882451

RESUMEN

Athletes regularly compete at 2,000-3,000 m altitude where peak oxygen consumption (VO2peak) declines approximately 10-20%. Factors other than VO2peak including gross efficiency (GE), power output, and pacing are all important for cycling performance. It is therefore imperative to understand how all these factors and not just VO2peak are affected by acute hypobaric hypoxia to select athletes who can compete successfully at these altitudes. Ten well-trained, non-altitude-acclimatised male cyclists and triathletes completed cycling tests at four simulated altitudes (200, 1,200, 2,200, 3,200 m) in a randomised, counter-balanced order. The exercise protocol comprised 5 x 5-min submaximal efforts (50, 100, 150, 200 and 250 W) to determine submaximal VO2 and GE and, after 10-min rest, a 5-min maximal time-trial (5-minTT) to determine VO2peak and mean power output (5-minTT(power)). VO2peak declined 8.2 +/- 2.0, 13.9 +/- 2.9 and 22.5 +/- 3.8% at 1,200, 2,200 and 3,200 m compared with 200 m, respectively, P < 0.05. The corresponding decreases in 5-minTT(power) were 5.8 +/- 2.9, 10.3 +/- 4.3 and 19.8 +/- 3.5% (P < 0.05). GE during the 5-minTT was not different across the four altitudes. There was no change in submaximal VO2 at any of the simulated altitudes, however, submaximal efficiency decreased at 3,200 m compared with both 200 and 1,200 m. Despite substantially reduced power at simulated altitude, there was no difference in pacing at the four altitudes for athletes whose first trial was at 200 or 1,200 m; whereas athletes whose first trial was at 2,200 or 3,200 m tended to mis-pace that effort. In conclusion, during the 5-minTT there was a dose-response effect of hypoxia on both VO2peak and 5-minTT(power) but no effect on GE.


Asunto(s)
Aclimatación/fisiología , Altitud , Ciclismo/fisiología , Transferencia de Energía/fisiología , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Aptitud Física/fisiología , Análisis y Desempeño de Tareas , Adulto , Humanos , Masculino
9.
J Appl Physiol (1985) ; 103(1): 39-47, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17446412

RESUMEN

The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico/fisiología , Fatiga Muscular , Resistencia Física/fisiología , Músculo Cuádriceps/enzimología , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Adaptación Fisiológica/genética , Inducción Enzimática , Fluoresceínas/metabolismo , Humanos , Isoenzimas/metabolismo , Masculino , Fatiga Muscular/genética , Ouabaína/metabolismo , Resistencia Física/genética , Unión Proteica , ARN Mensajero/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/genética
10.
Acta Physiol (Oxf) ; 189(3): 259-69, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17305706

RESUMEN

AIM: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. METHODS: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump alpha1, alpha2, alpha3, beta1, beta2 and beta3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). RESULTS: ETM demonstrated lower alpha1, alpha3, beta2 and beta3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P<0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P<0.03). RAM demonstrated a 230% and 364% higher alpha3 and beta3 mRNA expression than RAF, respectively (P<0.05), but no significant sex differences were found for alpha1, alpha2, beta1 or beta2 mRNA, [3H]-ouabain binding or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r=0.31, P<0.02) and between incremental exercise VO2(peak)) and both [3H]-ouabain binding (r=0.33, P<0.01) and 3-O-MFPase activity (r=0.28, P<0.03). CONCLUSIONS: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/enzimología , Resistencia Física , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Análisis de Varianza , Sitios de Unión , Biopsia , Estudios Transversales , Ciclofilinas/genética , Activación Enzimática , Femenino , Humanos , Masculino , Ouabaína/metabolismo , Educación y Entrenamiento Físico , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores Sexuales , ATPasa Intercambiadora de Sodio-Potasio/análisis , Factores de Tiempo
11.
Eur J Appl Physiol ; 98(3): 299-309, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16932967

RESUMEN

Hypoxia and exercise each modulate muscle Na(+), K(+)ATPase activity. We investigated the effects on muscle Na(+), K(+)ATPase activity of only 5 nights of live high, train low hypoxia (LHTL), 20 nights consecutive (LHTLc) versus intermittent LHTL (LHTLi), and acute sprint exercise. Thirty-three athletes were assigned to control (CON, n = 11), 20-nights LHTLc (n = 12) or 20-nights LHTLi (4 x 5-nights LHTL interspersed with 2-nights CON, n = 10) groups. LHTLc and LHTLi slept at a simulated altitude of 2,650 m (F(I)O(2) 0.1627) and lived and trained by day under normoxic conditions; CON lived, trained, and slept in normoxia. A quadriceps muscle biopsy was taken at rest and immediately after standardised sprint exercise, before (Pre) and after 5-nights (d5) and 20-nights (Post) LHTL interventions and analysed for Na(+), K(+)ATPase maximal activity (3-O-MFPase) and content ([(3)H]-ouabain binding). After only 5-nights LHTLc, muscle 3-O-MFPase activity declined by 2% (P < 0.05). In LHTLc, 3-O-MFPase activity remained below Pre after 20 nights. In contrast, in LHTLi, this small initial decrease was reversed after 20 nights, with restoration of 3-O-MFPase activity to Pre-intervention levels. Plasma [K(+)] was unaltered by any LHTL. After acute sprint exercise 3-O-MFPase activity was reduced (12.9 +/- 4.0%, P < 0.05), but [(3)H]-ouabain binding was unchanged. In conclusion, maximal Na(+), K(+)ATPase activity declined after only 5-nights LHTL, but the inclusion of additional interspersed normoxic nights reversed this effect, despite athletes receiving the same amount of hypoxic exposure. There were no effects of consecutive or intermittent nightly LHTL on the acute decrease in Na(+), K(+)ATPase activity with sprint exercise effects or on plasma [K(+)] during exercise.


Asunto(s)
Altitud , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Resistencia Física , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Regulación Enzimológica de la Expresión Génica , Humanos , Hipoxia/metabolismo , Masculino , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Ouabaína/metabolismo , Potasio/sangre , Tritio/metabolismo
12.
J Sci Med Sport ; 8(2): 222-32, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16075782

RESUMEN

A popular method to attempt to enhance performance is for athletes to sleep at natural or simulated moderate altitude (SMA) when training daily near sea level. Based on our previous observation of periodic breathing in athletes sleeping at SMA, we hypothesised that athletes' sleep quality would also suffer with hypoxia. Using two typical protocols of nocturnal SMA (2650 m), we examined the effect on the sleep physiology of 14 male endurance-trained athletes. The selected protocols were Consecutive (15 successive exposure nights) and Intermittent (3x 5 successive exposure nights, interspersed with 2 normoxic nights) and athletes were randomly assigned to follow either one. We monitored sleep for two successive nights under baseline conditions (B; normoxia, 600 m) and then at weekly intervals (nights 1, 8 and 15 (N1, N8 and N15, respectively)) of the protocols. Since there was no significant difference in response between the protocols being followed (based on n=7, for each group) we are unable to support a preference for either one, although the likelihood of a Type II error must be acknowledged. For all athletes (n=14), respiratory disturbance and arousal responses between B and N1, although large in magnitude, were highly individual and not statistically significant. However, SpO2 decreased at N1 versus B (p<0.001) and remained lower on N8 (p<0.001) and N15 (p<0.001), not returning to baseline level. Compared to B, arousals were more frequent on N8 (p=0.02) and N15 (p=0.01). The percent of rapid eye movement sleep (REM) increased from N1 to N8 (p=0.03) and N15 (p=0.01). Overall, sleeping at 2650 m causes sleep disturbance in susceptible athletes, yet there was some improvement in REM sleep over the study duration.


Asunto(s)
Altitud , Sueño/fisiología , Deportes , Adulto , Cámaras de Exposición Atmosférica , Humanos , Hipoxia/etiología , Masculino , Oximetría , Oxígeno/sangre , Polisomnografía , Fases del Sueño
13.
Am J Physiol Regul Integr Comp Physiol ; 289(1): R266-74, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15790751

RESUMEN

We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.


Asunto(s)
Ejercicio Físico , Fatiga/enzimología , Músculo Esquelético/enzimología , ARN Mensajero/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Volumen Sanguíneo , Femenino , Humanos , Masculino , Concentración Osmolar , Potasio/sangre , Factores de Tiempo
14.
J Appl Physiol (1985) ; 98(1): 186-92, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15033968

RESUMEN

Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K(+) regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O(2) fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude approximately 600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na(+)-K(+)-ATPase activity [K(+)-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na(+)-K(+)-ATPase content ([(3)H]ouabain binding sites). 3-O-MFPase activity was decreased by -2.9 +/- 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (-13.0 +/- 3.2 and -11.8 +/- 1.5%, respectively). Plasma K(+) concentration during exercise was unchanged by LHTL; [(3)H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na(+)-K(+)-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K(+) regulation or total work performed.


Asunto(s)
Altitud , Ciclismo , Ejercicio Físico , Hipoxia/fisiopatología , Músculo Esquelético/fisiopatología , Resistencia Física , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Enfermedad Crónica , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Masculino , Deportes , Factores de Tiempo
15.
J Physiol ; 556(Pt 2): 507-19, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-14754991

RESUMEN

Characterization of expression of, and consequently also the acute exercise effects on, Na(+),K(+)-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at approximately 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na(+),K(+)-ATPase alpha(1), alpha(2), alpha(3), beta(1), beta(2) and beta(3) mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na(+),K(+)-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 +/- 69 s; mean +/-s.e.m.) immediately increased alpha(3) and beta(2) mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst alpha(1) and alpha(2) mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for beta(1) and beta(3) mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for alpha(1), alpha(2), alpha(3), beta(1), beta(2) and beta(3) isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the alpha(1)-alpha(3) and beta(1)-beta(3) isoforms. Thus, human skeletal muscle expresses each of the Na(+),K(+)-ATPase alpha(1), alpha(2), alpha(3), beta(1), beta(2) and beta(3) isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na(+),K(+)-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na(+),K(+)-ATPase up-regulation.


Asunto(s)
Ejercicio Físico/fisiología , Isoenzimas/genética , Músculo Esquelético/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/citología , ARN Mensajero/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Regulación hacia Arriba/fisiología
16.
Am J Physiol Endocrinol Metab ; 286(5): E737-43, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14693511

RESUMEN

The AMP-activated protein kinase (AMPK) cascade has been linked to many of the acute effects of exercise on skeletal muscle substrate metabolism, as well as to some of the chronic training-induced adaptations. We determined the effect of 3 wk of intensified training (HIT; 7 sessions of 8 x 5 min at 85% Vo2 peak) in skeletal muscle from well-trained athletes on AMPK responsiveness to exercise. Rates of whole body substrate oxidation were determined during a 90-min steady-state ride (SS) pre- and post-HIT. Muscle metabolites and AMPK signaling were determined from biopsies taken at rest and immediately after exercise during the first and seventh HIT sessions, performed at the same (absolute) pre-HIT work rate. HIT decreased rates of whole body carbohydrate oxidation (P < 0.05) and increased rates of fat oxidation (P < 0.05) during SS. Resting muscle glycogen and its utilization during intense exercise were unaffected by HIT. However, HIT induced a twofold decrease in muscle [lactate] (P < 0.05) and resulted in tighter metabolic regulation, i.e., attenuation of the decrease in the PCr/(PCr + Cr) ratio and of the increase in [AMPfree]/ATP. Resting activities of AMPKalpha1 and -alpha2 were similar post-HIT, with the magnitude of the rise in response to exercise similar pre- and post-HIT. AMPK phosphorylation at Thr172 on both the alpha1 and alpha2 subunits increased in response to exercise, with the magnitude of this rise being similar post-HIT. Acetyl-coenzyme A carboxylase-beta phosphorylation was similar at rest and, despite HIT-induced increases in whole body rates of fat oxidation, did not increase post-HIT. Our results indicate that, in well-trained individuals, short-term HIT improves metabolic control but does not blunt AMPK signaling in response to intense exercise.


Asunto(s)
Acidosis/enzimología , Ejercicio Físico/fisiología , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/enzimología , Aptitud Física/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Adulto , Análisis de Varianza , Glucógeno/metabolismo , Humanos , Ácido Láctico/metabolismo , Consumo de Oxígeno/fisiología , Fosforilación , Transducción de Señal/fisiología
17.
Acta Physiol Scand ; 173(3): 275-86, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11736690

RESUMEN

This study investigated whether hypoxic exposure increased muscle buffer capacity (beta(m)) and mechanical efficiency during exercise in male athletes. A control (CON, n=7) and a live high:train low group (LHTL, n=6) trained at near sea level (600 m), with the LHTL group sleeping for 23 nights in simulated moderate altitude (3000 m). Whole body oxygen consumption (VO2) was measured under normoxia before, during and after 23 nights of sleeping in hypoxia, during cycle ergometry comprising 4 x 4-min submaximal stages, 2-min at 5.6 +/- 0.4 W kg(-1), and 2-min 'all-out' to determine total work and VO(2peak). A vastus lateralis muscle biopsy was taken at rest and after a standardized 2-min 5.6 +/- 0.4 W kg(-1) bout, before and after LHTL, and analysed for beta(m) and metabolites. After LHTL, beta(m) was increased (18%, P < 0.05). Although work was maintained, VO(2peak) fell after LHTL (7%, P < 0.05). Submaximal VO2 was reduced (4.4%, P < 0.05) and efficiency improved (0.8%, P < 0.05) after LHTL probably because of a shift in fuel utilization. This is the first study to show that hypoxic exposure, per se, increases muscle buffer capacity. Further, reduced VO2 during normoxic exercise after LHTL suggests that improved exercise efficiency is a fundamental adaptation to LHTL.


Asunto(s)
Adaptación Fisiológica/fisiología , Altitud , Hipoxia/fisiopatología , Músculo Esquelético/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Cámaras de Exposición Atmosférica , Ciclismo/fisiología , Creatina/metabolismo , Prueba de Esfuerzo , Glucógeno/metabolismo , Frecuencia Cardíaca/fisiología , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Masculino , Consumo de Oxígeno/fisiología , Fosfocreatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...