Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biogeochemistry ; 143(2): 151-169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156287

RESUMEN

Seasonal hypoxia on the Louisiana continental shelf (LCS) has grown to over 22,000 km2 with limited information available on how low oxygen effects the benthos. Benthic macrofaunal colonization and sediment biogeochemical parameters were characterized at twelve stations in waters 10 - 50 m deep along four transects spanning 320 km across the LCS hypoxic zone in the early fall of 2010 when bottom waters typically return to oxic conditions. Chemical data and sediment profile imaging (SPI) support three primary mechanistic pathways of organic matter degradation on the LCS: (i) metal oxide cycling in depositional muds, (ii) infauna-driven bioturbation delivering oxygen below the sediment-water interface, and (iii) sulfate reduction in sediments where iron oxide availability is limited. The transect nearest the Mississippi River delta had the highest concentrations of porewater and solid phase Mn and Fe with SPI images of recently deposited reddish, mixed muddy sediments suggestive of metal cycling. The deepest stations had high oxidized iron concentrations and rust colored sediments with faunal colonization that suggests sediments are oxidized via bioturbation. Many nearshore and central LCS stations had more black sediments, more disturbed clay layers, lower amounts of oxidized iron, and higher sulfate reduction rates than the deepest stations. Sediment mixing coefficients, DB , determined from chlorophyll-a concentration profiles varied between 33 and 183 cm-2 y-1. DB values were highest at the deepest stations where sediments were colonized. DB were not determined at two nearshore stations where chlorophyll-a concentrations were highly variable in surficial sediments, and on the eastern shelf where sedimentation is high. This study provides a regional view of benthic faunal colonization and sediment biogeochemistry on the LCS, describes regions with potentially different pathways of organic matter degradation, and demonstrates the importance of both bioturbation and physical mixing in processing the large amounts of organic matter in river-dominated continental shelf systems.

2.
Mar Pollut Bull ; 114(2): 995-1006, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27876374

RESUMEN

Water Quality (WQ) condition is based on ecosystem stressor indicators (e.g. water clarity) which are biogeochemically important and critical when considering the Deepwater Horizon oil spill restoration efforts under the 2012 RESTORE Act. Nearly all of the proposed RESTORE projects list restoring WC as a goal, but 90% neglect water clarity. Here, dynamics of optical constituents impacting clarity are presented from a 2009-2011 study within Pensacola, Choctawhatchee, St. Andrew and St. Joseph estuaries (targeted RESTORE sites) in Northwest Florida. Phytoplankton were the smallest contribution to total absorption (at-wPAR) at 412nm (5-11%), whereas colored dissolved organic matter was the largest (61-79%). Estuarine at-wPAR was significantly related to light attenuation (KdPAR), where individual contributors to clarity and the influence of climatic events were discerned. Provided are conversion equations demonstrating interoperability of clarity indicators between traditional State-measured WQ measures (e.g. secchi disc), optical constituents, and even satellite remote sensing for obtaining baseline assessments.


Asunto(s)
Monitoreo del Ambiente/legislación & jurisprudencia , Estuarios , Contaminación del Agua/legislación & jurisprudencia , Ecosistema , Monitoreo del Ambiente/métodos , Florida , Luz , Contaminación por Petróleo , Fitoplancton , Agua de Mar/química , Contaminación del Agua/prevención & control , Calidad del Agua
3.
Mar Pollut Bull ; 62(2): 415-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21237471

RESUMEN

Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m⁻¹ at Barataria in June 2008 to 11.225 m⁻¹ at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412nm which was between 0.0087 m⁻¹ at Mississippi in May 2008 and 0.0261 m⁻¹ at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 µM. PIM ranged between 1.1 and 426.3 mg L⁻¹ and POM was between 0.3 and 49.6 mg L⁻¹.


Asunto(s)
Compuestos Inorgánicos/análisis , Compuestos Orgánicos/análisis , Material Particulado/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Louisiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...