Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(6)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37372352

RESUMEN

Trichopoda pennipes is a tachinid parasitoid of several significant heteropteran agricultural pests, including the southern green stink bug, Nezara viridula, and leaf-footed bug, Leptoglossus phyllopus. To be used successfully as a biological control agent, the fly must selectively parasitize the target host species. Differences in the host preference of T. pennipes were assessed by assembling the nuclear and mitochondrial genomes of 38 flies reared from field-collected N. viridula and L. phyllopus. High-quality de novo draft genomes of T. pennipes were assembled using long-read sequencing. The assembly totaled 672 MB distributed among 561 contigs, having an N50 of 11.9 MB and a GC of 31.7%, with the longest contig at 28 MB. The genome was assessed for completeness using BUSCO in the Insecta dataset, resulting in a score of 99.4%, and 97.4% of the genes were single copy-loci. The mitochondrial genomes of the 38 T. pennipes flies were sequenced and compared to identify possible host-determined sibling species. The assembled circular genomes ranged from 15,345 bp to 16,390 bp and encode 22 tRNAs, two rRNAs, and 13 protein-coding genes (PCGs). There were no differences in the architecture of these genomes. Phylogenetic analyses using sequence information from 13 PCGs and the two rRNAs individually or as a combined dataset resolved the parasitoids into two distinct lineages: T. pennipes that parasitized both N. viridula and L. phyllopus, and others that parasitized only L. phyllopus.


Asunto(s)
Dípteros , Genoma Mitocondrial , Heterópteros , Animales , Genoma Mitocondrial/genética , Filogenia , Agricultura
2.
J Comp Neurol ; 528(2): 211-230, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343075

RESUMEN

With over 48,000 species currently described, spiders (Arthropoda: Chelicerata: Araneae) comprise one of the most diverse groups of animals on our planet, and exhibit an equally wide array of fascinating behaviors. Studies of central nervous systems (CNSs) in spiders, however, are relatively sparse, and no reports have yet characterized catecholaminergic (dopamine [DA]- or norepinephrine-synthesizing) neurons in any spider species. Because these neuromodulators are especially important for sensory and motor processing across animal taxa, we embarked on a study to identify catecholaminergic neurons in the CNS of the wolf spider Hogna lenta (Lycosidae) and the jumping spider Phidippus regius (Salticidae). These neurons were most effectively labeled with an antiserum raised against tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. We found extensive catecholamine-rich neuronal fibers in the first- and second-order optic neuropils of the supraesophageal mass (brain), as well as in the arcuate body, a region of the brain thought to receive visual input and which may be involved in higher order sensorimotor integration. This structure likely shares evolutionary origins with the DA-enriched central complex of the Mandibulata. In the subesophageal mass, we detected an extensive filigree of TH-immunoreactive (TH-ir) arborizations in the appendage neuromeres, as well as three prominent plurisegmental fiber tracts. A vast abundance of TH-ir somata were located in the opisthosomal neuromeres, the largest of which appeared to project to the brain and decorate the appendage neuromeres. Our study underscores the important roles that the catecholamines likely play in modulating spider vision, higher order sensorimotor processing, and motor patterning.


Asunto(s)
Neuronas Adrenérgicas/citología , Sistema Nervioso Central/citología , Neuronas Dopaminérgicas/citología , Arañas/citología , Animales , Catecolaminas , Inmunohistoquímica , Tirosina 3-Monooxigenasa
3.
J Insect Sci ; 19(4)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268545

RESUMEN

The 2018 student debates of the Entomological Society of America were held at the Joint Annual Meeting for the Entomological Societies of America, Canada, and British Columbia in Vancouver, BC. Three unbiased introductory speakers and six debate teams discussed and debated topics under the theme 'Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication'. This year's debate topics included: 1) What is the most harmful invasive insect species in the world? 2) How can scientists diffuse the stigma or scare factor surrounding issues that become controversial such as genetically modified organisms, agricultural biotechnological developments, or pesticide chemicals? 3) What new/emerging technologies have the potential to revolutionize entomology (other than Clustered Regularly Interspaced Short Palindromic Repeats)? Introductory speakers and debate teams spent approximately 9 mo preparing their statements and arguments and had the opportunity to share this at the Joint Annual Meeting with an engaged audience.


Asunto(s)
Entomología/tendencias , Insectos , Animales , Biotecnología , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA