Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 17(10): 6469-6474, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28926715

RESUMEN

Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

2.
Phys Chem Chem Phys ; 17(1): 209-16, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25381806

RESUMEN

Photo-oxidation of individual, air-suspended single walled carbon nanotubes (SWCNTs) is studied by femtosecond laser spectroscopy and imaging. Individual SWCNTs are imaged by four wave mixing (FWM) microscopy under an inert gas (Ar or N2) atmosphere. When imaging is performed in an ambient air atmosphere, the decay of the FWM signal takes place. Electron microscopy shows that SWCNTs are not destroyed and the process is attributed to photoinduced oxidation reactions which proceed via a non-linear excitation mechanism, when irradiation is performed with ∼30 fs pulses in the visible spectral region (500-600 nm). Photo-oxidation can be localized in specific regions of SWCNTs within optical resolution (∼300 nm). The effect of photo-oxidation on Raman spectra was studied by irradiating a local spot on an individual SWCNT and comparing the spectra of irradiated and non-irradiated regions of the same tube. It is shown at an individual nanotube level that oxidation leads to a decrease of the intensity of the Raman signal and an upshift of the G-band.

3.
Nanoscale ; 7(7): 2851-5, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25492105

RESUMEN

We demonstrate a simple all-optical patterning method for graphene, based on laser induced two-photon oxidation. By tuning the intensity and dose of irradiation, the level of oxidation is controlled, the band gap is introduced and electrical and optical properties are continuously tuned. Complex patterning is performed for air-suspended monolayer graphene and for graphene on substrates. The presented concept allows development of all-graphene electronic and optoelectronic devices with an all-optical method.

4.
J Phys Chem B ; 114(4): 1548-58, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20058871

RESUMEN

Internal dynamics of dansylated poly(propyleneamine) dendrimers (POPAM, G1-G4) in solution and excitation energy transfer from dansyls to eosin in POPAM-eosin complexes have been studied by time-resolved fluorescence spectroscopy and molecular dynamics (MD) simulations. Combining the results from fluorescence anisotropy and the MD simulation studies suggests three time domains for the internal dynamics of the G3 and G4 generations, about 60 ps for motions of the outer-sphere dansyls, 500-1000 ps for restricted motions of back-folded dansyls, and 1500-2600 ps for the overall rotation. For the smaller generations, the contribution from the restricted motions was not entirely evident. Eosin binding hinders fast rotation of the dansyl fragments in the largest G4 dendrimer, but the motion of back-folded dansyls is more hindered in the pure dendrimer. Both fluorescence anisotropy and MD results for the G4 dendrimer support the "soft" dendrimer picture with almost free mobility and substantial back-folding of the dansyls of the dendrimers in solution. Analysis of time-dependent spectral shifts of fluorescence reveals 20-30 ps excited-state solvation relaxation around a single dansyl of a dendrimer. Dendrimer-independent excitation energy transfer from 4 to 8 ps from dansyls to eosins in POPAM-eosin complexes G2-G4 was observed.

5.
J Chem Phys ; 123(6): 64509, 2005 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16122328

RESUMEN

Time-resolved coherent anti-Stokes Raman-scattering (CARS) measurements are carried out for iodine (I2) in solid krypton matrices. The dependence of vibrational dephasing time on temperature and vibrational quantum number v is studied. The v dependence is approximately quadratic, while the temperature dependence of both vibrational dephasing and spectral shift, although weak, fits the exponential form characteristic of dephasing by pseudolocal phonons. The analysis of the data indicates that the frequency of the pseudolocal phonons is approximately 30 cm(-1). The longest dephasing times are observed for v = 2 being approximately 300 ps and limited by inhomogeneous broadening. An increase in the dephasing rate of v = 2 as the temperature is lowered to T = 2.6 K is taken as a clear indication of lattice-strain-induced inhomogeneity of the ensemble coherence.

6.
Appl Opt ; 43(24): 4718-22, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15352397

RESUMEN

Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...